
Topics in High-Dimensional Probability and Statistics∗

Lecture 5: Random projections and the Johnson-Lindenstrauss lemma
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1 Approximate isometries

Consider n distinct data points x1, . . . , xn in RD considered
deterministic (all the following results may be easily extended
to the case of random points via conditioning). If the dimen-
sion D is very large, processing this data for some given task
may be computationally demanding. An interesting problem
is to figure out whether there exists a way to transform the
high-dimensional data points x1, . . . , xn ∈ RD, through some
map

T : RD → Rd for some d� D,

into lower dimensional data points T (x1), . . . , T (xn) ∈ Rd

without losing too much information about the original data.
One way to guarantee that map T preserves the informa-

tion of the data is to require the geometry of the data set to be
completely preserved, i.e., to require that T : {x1, . . . , xn} →
Rd is an isometry. Precisely, this means that, for all i 6= j,

‖T (xi)− T (xj)‖2 = ‖xi − xj‖2,

where, on the left hand-side, ‖.‖2 refers to the euclidean norm
in Rd while, on the right hand-side, ‖.‖2 refers to the euclidean
norm in RD.

This isn’t really a reasonable requirement for many rea-
sons. First, one can exhibit simple settings in which it is
impossible when we restrict attention to linear maps (see ex-
ample 1.1).

Example 1.1. Consider D = 2, d = 1 and x1, x2, x3 ∈ R2

the vertices of a triangle with sides of equal lengths. Then,
there is no linear map T : R2 → R that preserves pairwise
distances.

More generally, if we think of the data points as points
sampled from a distribution with a density with respect to
Lebesgue measure, then for any d < D, the points x1, . . . , xn
all belong to a strict subspace of RD (i.e., a subspace of di-
mension at most D − 1) with probability 0. Hence, mapping
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all these points isometrically into a lower dimensional space
is likely to fail with high probability.

But one can be a little less demanding, and require T to
be an approximate isometry. To be more precise, for a fixed
ε ∈ (0, 1), we could only ask to have, for all i 6= j,

1− ε ≤ ‖T (xi)− T (xj)‖
2
2

‖xi − xj‖22
≤ 1 + ε.

The goal of this lecture is to show that we can construct a
random and linear map T : RD → Rd such that, for any every
ε, δ ∈ (0, 1), the above property holds with probability 1 − δ
for d of order

1

ε2
log

(
n√
δ

)
,

and independently of the dimension D.

2 Reminder

We recall a few facts, seen in lecture 2, that will be useful in
the proof of the Johnson-Lindenstrauss lemma below.

A basic result of interest will be the following simple ver-
sion of the Bernstein’s concentration inequality.

Lemma 2.1. Let Y1, . . . , Yn be independent random vari-
ables. Suppose that there exists s2, b > 0 such that, for all
1 ≤ i ≤ n and for all θ ∈ [−1/b, 1/b],

logE exp(θ{Yi − EYi}) ≤
θ2s2

2
.

Then, for all t > 0,

P

{
1

n

n∑
i=1

(Yi − EYi) > t

}
∨ P

{
1

n

n∑
i=1

(Yi − EYi) < −t

}

≤ exp

(
−nt

2

{
1

b
∧ t

s2

})
.

The second important observation is that, given a real
valued and sub-gaussian random variable X with variance
proxy σ2, the variable X2 satisfies,

∀θ ∈ (−1

a
,
1

a
), logE[exp(θ{X2 − EX2})] ≤ θ2a2

2(1− θa)
,

with
a := 4eσ2.

In particular,

∀θ ∈ [− 1

2a
,
1

2a
], logE[exp(θ{X2 − EX2})] ≤ θ2(2a2)

2
.

3 Johnson-Lindenstrauss lemma

Let X = {x1, . . . , xn} ⊂ RD be a set of n distinct data points,
considered deterministic, and fix

ε, δ ∈ (0, 1).
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Theorem 3.1. Let M ∈ Rd×D be a random matrix
whose rows R1, . . . , Rd ∈ RD are independent, centered and
isotropic, i.e., such that

E[Ri] = 0 and E[RiR
>
i ] = ID.

Suppose that each Ri is sub-gaussian with variance proxy at
most σ2. Define finally

T :=
1√
d
M.

Then, provided

d ≥ 64e2σ4

ε2
log

(
n2

δ

)
,

we have

P

(
∀i 6= j : 1− ε ≤ ‖T (xi)− T (xj)‖

2
2

‖xi − xj‖22
≤ 1 + ε

)
≥ 1− δ.

Proof. Denote

Z :=

{
xi − xj
‖xi − xj‖2

: i 6= j

}
.

By linearity of T , the statement we need to prove is then
equivalent to

P

(
max
z∈Z
|‖T (z)‖22 − 1| > ε

)
< δ.

Using a union bound, observe that

P

(
max
z∈Z
|‖T (z)‖22 − 1| > ε

)
≤ |Z|max

z∈Z
P
(
|‖T (z)‖22 − 1| > ε

)
=
n(n− 1)

2
max
z∈Z

P
(
|‖T (z)‖22 − 1| > ε

)
<
n2

2
max
z∈Z

P
(
|‖T (z)‖22 − 1| > ε

)
.

As a result, it is enough to prove that, for all z ∈ Z,

P
(
|‖T (z)‖22 − 1| > ε

)
≤ 2δ

n2
.

For z ∈ Z, note that

T (z) =
1√
d
Mz

=
1√
d
(〈R1, z〉, . . . , 〈Rd, z〉)>.

As a result,

|‖T (z)‖22 − 1| = |1
d

d∑
i=1

〈Ri, z〉2 − 1|

= |1
d

d∑
i=1

(〈Ri, z〉2 − E〈Ri, z〉2)|,

where the last identity follows since

E[〈Ri, z〉2] = z>E[RiR
>
i ]z = ‖z‖22 = 1.

Since ‖z‖2 = 1 for every z ∈ Z, each random variable 〈Ri, z〉
is sub-gaussian with variance proxy at most σ2. According
to results mentioned in the previous section, this implies that
variables

Yi := 〈Ri, z〉2,
satisfy, for all 1 ≤ i ≤ d and for all θ ∈ [−1/b, 1/b],

logE exp(θ{Yi − EYi}) ≤
θ2s2

2
,

where b = 8eσ2 and s2 = 32e2σ4. As a result, we deduce
that, for every z ∈ Z,

P
(
|‖T (z)‖22 − 1| > ε

)
≤ 2 exp

(
−dε

2

{
1

b
∧ ε

s2

})
= 2 exp

(
− dε

16eσ2

{
1 ∧ ε

4eσ2

})
= 2 exp

(
− dε2

64e2σ4

)
,

where the last inequality follows from the fact that ε ∈ (0, 1)
and that σ2 ≥ 1/4e by assumption. To sum up, the statement
follows provided

2 exp

(
− dε2

64e2σ4

)
≤ 2δ

n2
,

which is equivalent to

d ≥ 64e2σ4

ε2
log

(
n2

δ

)
.

4 Examples

We give two explicit constructions of matrixM satisfying the
assumptions of the theorem.

Example 4.1. Suppose that M = (Mi,j) where entries
Mi,j are independent and, for all i ∈ {1, . . . , d} and all
j ∈ {1, . . . , D},

P(Mi,j = −1) = P(Mi,j = +1) =
1

2
.

Then it satisfies the assumptions of Theorem 3.1 with σ2 = 1.

Example 4.2. Suppose that M = (Mi,j) where entries
Mi,j are independent and, for all i ∈ {1, . . . , d} and all
j ∈ {1, . . . , D},

Mi,j ∼ N(0, 1).

Then it satisfies the assumptions of Theorem 3.1 with σ2 = 1.

5 Note

For an application of Theorem 3.1 in the context of clustering,
we refer the reader to [2]. We also recommend Chapter 5 in [1]
for further applications of the Johnson-Lindenstrauss lemma.
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