Topics in Statistical Learning Theory*

Lecture 6: Introduction to convex optimization
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Convex optimization is the problem of finding (or rather
approximating), through algorithmic procedures, minimizers
of a convex function F' : © — R defined on a convex set ©.
This lecture is the first, in this course, addressing this topic.
While we will present algorithms and methods applicable in
a broad range of applications, it is worth keeping in mind
that the typical function we want to minimize in statistical
learning is of the form

n

F(6) = = 3" Y5 fo(X) +90)

i=1

where {(X;,Y;)}, is our learning sample of R? x R-valued
labeled observations, where ¢ : R2 — R is a chosen loss func-
tion, where fy is a function fy : R? — R indexed by 6 in some
parameter space © and where ,,(0) denotes a regularization
term. In this lecture, we review a few concepts from convex
analysis that will be useful in the following lectures.

1 Differential calculus (survival guide)

1.1 Differentiable functions

Let U be an open' subset of R¥. A function f : U — R’ is
said to be differentiable if, for every z € U, there exists a
linear function Df(x) : R¥ — R’ such that, for all h € RF
such that = + h € U,

f(xz+h) = f(z) + Df(x)(h) + [|h][2e(h),
where ¢ : R¥ — R! satisfies

Tim [le(h)]}> = 0.

If it exists, the linear function Df(x) : R¥ — R’ is unique and
called the differential of f at z.

*Teaching material can be found at https://www.qparis-math.com/
teaching.

1Recall that a subset U of RF is said to be open if, for all € U,
there exists » > 0 such that B(z,r) := {y € R¥|||lz —y|l2 <7} C U.

Remark 1.1. Note that, for all x € U, Df(x)(h) is indeed
defined for all h € RF. To see this, note that since U is open,
then for all h € R there exists t > 0 small enough such that
x4+ th € U. Then, we have by definition of D f(x) that

[z +th) = f(x) + Df(x)(th) + t[|h]|2e(th)
= f(x) +tDf(x)(h) + t||hll2(th),

where the last line follows from linearity of D f(x). In partic-
ular, we deduce that for all h € R*, and small enough t > 0,

flz+th) — f(z)

Df(a)(h) = =

= [[hll22(th),

from which it follows that, for all x € U and all h € R¥,

i @t th) — f@)
t—0,t#£0 t

Df(x)(h) = (L.1)

Remark 1.2. The above remark shows why it is important
for the domain U of function f to be open. Whenever we
consider a function f : © — R’ defined on a non open set
© C RF, it isn’t clear a priori what it means for f to be
differentiable. The convention in this case is very simple: we
say that f : © — R is differentiable iff there exists an open set
U D O such that f can in fact be defined on U and such that
f U — R is differentiable as defined above. The differential
Df(x) of f at every x € © is then defined, without ambiguity,
as in (1.1)

Example 1.3. Whenever k = 1, then for any x € U and any
h € R, we recover the more familiar formula

Df(x)(h) = hf'(x),

where
o @)~ (@)
t—0,t#£0 t

€ R

fi@) =
Example 1.4. Suppose that, for all x € R*, f(x) = Az +b
for a matriz A € R* and a vector b € RY. Then f : RF — R¢
is differentiable and, for all x,h € R,
Df(x)(h) = Ah.
1.2 Sum and composition of differentiable functions

Suppose f : U — R’ is of the form

f= Zaifia
i=1

where {a;}?; are real numbers and each f; : U — R is a
differentiable function. Then, for every z € U and h € R*,
one easily checks that

Dﬂw0w=§ijﬁwxm.
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Now suppose that h: U ¢ R* - R™ and g: V € R™ — R’
are two differentiable functions such that h(U) C V. Then
the function f = go h : U — R’ is differentiable and, for all
zeU,

Df(x) = Dg(h(x)) o Dh(x).
This formula is known as the chain rule.

Example 1.5. Let A € R™** b€ R™ and g : R™ — R’ be
differentiable. Define f : R¥ — R’ by f(z) = g(Ax+b). Then
f is differentiable and, for all z,h € RF,

Df(z)(h) = Dg(Az + b)(Ah).

Example 1.6. As a particular case of Example 1.5 (case
m =/{=1), consider a € R¥, b € R and g : R — R differen-
tiable. Define f : R* — R by f(z) = g(a"x +b). Then f is
differentiable and, for all x,h € R,

Df(z)(h) = ¢'(a"x + b)a"h.

Example 1.7. As another particular case of Example 1.5
(case k =€ =1), consider a € R™, b€ R™ and g : R™ = R
differentiable. Define f : R — R by f(t) = g(at +b). Then f
is differentiable and, for allt,h € R,

Df(t)(h) = hf'(t) = Dg(at + b)(ah) = hDg(at + b)(a),
and in particular

f(®)

Example 1.8. In the context of least-squares regression,

consider the function F : RF — R defined, for all =
(01,...,0) €RF, by

Z Zﬁfa

where {(X;,Y;) Y1, is our learning sample of R x R-valued
labeled observations, where fi, ..., fr : R* = R are fized refer-
ences functions and where Q(0) denotes a regularization term.
Supposing that ) is differentiable, and denoting for all x € R?

= Dg(at + b)(a).

F(0) = Q(0),

f(2) = (fu(@),...., fu(2))" €R",
F is differentiable and, for all 6, h € RF,
2 n
DF = —0TE(X)F(X:)Th + DQ .
=~ 05— TR Th o DR

Example 1.9. Similarly, in the context of the convex ap-
proach to binary classification, consider the function F :
R*¥ — R defined, for all 0 = (6y,...,0r) €R*, by

n k
= % > oY z:l 0;f;(X
i=1 j=

where {(X;,Y:)}y is our learning sample of R% x {—1,+1}-
valued labeled observations, where f1,..., fr : RT — {—1,+1}
are fized hard classifiers and where Q(0) denotes a requlariza-
tion term. Supposing that ¢ : R — R and Q are differentiable,
and denoting for all x € R?

f(l’) = (fl(x)v ey fk(x))—r € {717 1}k7
F is differentiable and, for all 6, h € RF,

DF :——Zg@

Q(0),

Y0 T£(X:))YiE(X;) " h+ DQUO)(h).

1.8 Gradient

Let U C R* be open and f : U — R be differentiable.
Introduce the canonical basis ei,...,e; of RF so that any
h = (h1,...,hx) € R writes (in a unique way)

k
h = Z hjej.
j=1

Then, for any « € U, we deduce by linearity of D f(x) that

k
= hDf(x)(e;) (1.2)
j=1
It is classical to denote
0
5 (@) = Df(@)(e).

which is called the partial derivative of f at = with respect to
the j-th coordinate. It follows from (1.1) that

of . f(@)
3% '

flx +te;) —
t—>0 t;éO t

The gradient V f(x) of f at z is the vector of all partial deriva-
tives of f at x, i.e.

Vi) = (5o

Note finally that, for all z € U and all h € R*, equation (1.2)
reads

of T
), ...,M(x)) € Rk

Df(z)(h) = h"V f(z).

Example 1.10. In the context of Example 1.5, when ever
=1,

Vf(x) = ATVg(Az +b).

Example 1.11. In the context of Example 1.6,

Vi(z)

Example 1.12. In the context of Example 1.7,

=g (a"z+Db)a.

f'(t) = a" Vg(at +b).

Example 1.13. In the context of Example 1.8,

s

Example 1.14. In the context of Example 1.9,

:_fzgo

S\M

—0TE(X0)F(X;) + VQH).

Y0 £(X;))Yif(X;) + VQ(6).

1.4 Interpretation of the gradient

The gradient of a differentiable function f : U € R¥ — R ben-
efits from a fundamental physical interpretation, quite basic
to many optimization algorithms. The next result formalizes
the following fact:

"The vector —V f(x) points in the direction of fastest imme-
diate decrease of f at x."



Theorem 1.15. Let U C R* be open, f: U — R be differen-
tiable and x € U. For any v € RF, with ||v|j2 = 1, set

fo(t) == f(z +tv),

which is well define for t € R close enough to 0. Then, if
Vf(z) #0, f1(0) is minimized for

e Vi@
Vi@l

Proof. We known from example 1.12 that
f3(0) =0TV f(2).

In particular, it follows from Cauchy-Schwarz’s inequality
that, for every v € RF with |jvs = 1,

[u(0) = =V F(@)]l2-

Note finally that this lower bound is achieved for v = v*. O

1.5 Taylor’s formula and consequences

We'll often use the following version of Taylor’s formula.

Theorem 1.16. Let U C R* be open and f : U — R be
differentiable. Let x,y € U. Then,

fly) = fz) + /O (y—2)TV((1 = t)x + ty) dt.

We may deduce from this formula the following. Recall
that a function f : U — R is called L-Lipschitz if, for all
r,y U,

[f(@) = fW)] < Lz =yl

Theorem 1.17. Let U C R be open and f : U — R be
differentiable. Then f is L-Lipschitz iff, for all x € U,

IVf(@)]2 < L.
Proof. Suppose that, for all z € U,
IVf(@)]2 < L.
Then it follows from Taylor’s formula that, for all z,y € U,

[f(z) = f(y)] < <f§ﬁ)p1] VA =tz +ty)ll2) [l =yl

< Lz =yl

Conversely, suppose that f : U — R is differentiable and L-
Lipschitz. Then, since for all z € U and h € R* we have

L)~ /(@)
t—0,t£0 t

RV f(z) =

)

we get that
BTV f(z)| < Ll

Taking h = V f(x), we get

IVf(@)l2 < L.

2 Convex sets

A set © C R¥ is said to be convex if, for all 2,y € © and all
A€ [0,1],
(I-XNz+AIyecoO.

This section lists some basic properties of convex sets.

Theorem 2.1 (Separation). Let © C R* be a closed convex
set and o € R¥\ ©. Then there exists u € R¥ andt € R such
that u'zg <t and Yz € ©,u’ z > t.

The previous result means that point o ¢ © is separated
from © by the affine hyperplane {x € R* : uT2z = t}. If ©
is not closed, we can only guarantee the existence of u € R¥
such that, u"z¢g < vz for all z € ©. The next result follows
from the separation theorem.

Theorem 2.2 (Supporting hyperplane). Let © C R* be a
convex set and xg € 00 be a point on its boundary. Then,

there exists u € R*, w # 0, such that for all x € ©, u'xy <

UT,I',

For most of what we’ll see next, an important notion is
that of the projection onto a closed and convex set.

Theorem 2.3. Let © C RF be a closed and convex set. Then,
for all x € R*, there exists a unique point Ilg(z) € © solving

I — = mi — .
e (2) — flz = min fly — |2

The point Tlg(x) is called the projection of x onto ©. In
addition, Ilg(z) is the only point in © such that,

Vye O, (z—Te(x))'(y—He(x)) <O0.

3 Convex functions

Given a convex set © C R¥, a function f : © — R is convex
if, for all z,y € © and for all A € [0, 1],

F{A =Nz +Ay) < (1 =N f(2) +Af(y).

One checks that the function f: © — R is convex if and only
if the epigraph of f, i.e. the set

epi(f) = {(2.1) €@ x R: f(x) < 1},
is a convex subset of R* x R.

Definition 3.1 (Subgradients). Given a set © C RF and a
function f: © — R, a vector g € R¥ is called a subgradient of
fatx e O if

Vyeo, fly)—flx) =g (y—a).

The set of all subgradients of f at x is denoted Of(x) and
called the subdifferential of f at x.

Theorem 3.2. Let © C R* be a convex set and f : © — R
be a function.

(1) The function f is convez if, for all z € ©, df(z) # 0.
(2) If f is convex then, for all x € int(O), df(z) # 0.

(3) If f is convex and differentiable, then for all x € int(0©),
Of(x) ={Vf(x)}.

(4) If f is convex, then for all x,y € int(O), all g, € If(x)
and all g, € Of(y),

(9o — gy) ' (x —y) > 0.



Proof. (1) Let x,y € © and A € [0,1]. Since there exists
g € 0f((1—=XN)x+ Ay), it follows by definition of a subgradient
that

f@) = F(L=Nz+Xy) > Ag' (y — ),

and

f) = F(L=XNz+Xy) > (1= N)g' (z—y).

Multiplying the first inequality by (1 — A), the second by A
and summing the obtained inequalities, we obtain that f((1—
ANz + Ay) < (1 —N)f(z) + M\f(y). Since this holds for all
z,y € © and all \ € [0,1], we deduce that f is convex.

(2) Let € ©. The point (z, f(z)) belongs to depi(f). Since
epi(f) is a convex set, we deduce from Theorem 2.2 that there
exists (a,b) € R¥ x R, (a,b) # (0,0), such that

V(y,t) € epi(f), a'xz+bf(z)>a'y+ bt (3.1

Observe that (y,t) € epi(f) implies that (y,t') € epi(f) for
all ' > t. Hence, for any y € © the above inequality should
hold true for any ¢t > f(y) and in particular when ¢t — +o0
which imposes that b < 0. Now suppose that z € int(O).
Then, for € > 0 small enough, the point z = = + €a belongs
to © so that, for all t > f(z2),

aTx+bf(x) > a2+ bt < bf(x) > ellal + bt.

If b = 0 we deduce that a = 0 which is a contradiction. Hence
b < 0. Now for any y € ©, writing (3.1) for ¢t = f(y) implies
that

a’(y—y)

£0) = fa) > =,

which shows that a/|b| € Of (z).

(3) Suppose that f is convex, differentiable and take = €
int(©). For any h € R¥ and ¢ € R small enough so that both
x +th € C, a Taylor expansion of f around z reveals that

f(2) = £(z) £ 69 F(2)Th+o(t).

Now for any g € 9f(z), we have by definition of a subgradient
that
f(xEth) > f(x)£tg h.

In particular, we deduce that
+tVf(z) "h 4 o(t) > £tg " h.

This imposes finally that, for all h € R*, Vf(x)"h = g"h
which implies that g = Vf(x).

(4) For all z,y € int(©), all g, € 0f(x) and all g, € 0f(y),
summing the inequalities f(z) — f(y) > g, (z—y) and f(y) —
f(z) > gl (y — z) easily provides the last property. O

Theorem 3.3 (First order optimality condition). Let © C R¥
be a convex set and f: © — R be a convex function. Then

z* € argminf(z) <& 0€df(z").
€0

Proof. Both conditions are equivalent to the fact that f(z) >
fz*)+ 0T (z — x*), for all z € O. O

Theorem 3.4. Let © C R* be an open convex set and f :
© — R be a convex function. Then f is L-Lipschitz if and
only if, for all x € © and all g € Of(x), ||g]l2 < L.
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