
Topics in Statistical Learning Theory∗

Lecture 6: Introduction to convex optimization
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Convex optimization is the problem of finding (or rather
approximating), through algorithmic procedures, minimizers
of a convex function F : Θ → R defined on a convex set Θ.
This lecture is the first, in this course, addressing this topic.
While we will present algorithms and methods applicable in
a broad range of applications, it is worth keeping in mind
that the typical function we want to minimize in statistical
learning is of the form

F (θ) =
1

n

n∑
i=1

`(Yi, fθ(Xi)) + Ω(θ),

where {(Xi, Yi)}ni=1 is our learning sample of Rd × R-valued
labeled observations, where ` : R2 → R is a chosen loss func-
tion, where fθ is a function fθ : Rd → R indexed by θ in some
parameter space Θ and where Ωn(θ) denotes a regularization
term. In this lecture, we review a few concepts from convex
analysis that will be useful in the following lectures.

1 Differential calculus (survival guide)

1.1 Differentiable functions

Let U be an open1 subset of Rk. A function f : U → R` is
said to be differentiable if, for every x ∈ U , there exists a
linear function Df(x) : Rk → R` such that, for all h ∈ Rk

such that x+ h ∈ U ,

f(x+ h) = f(x) +Df(x)(h) + ‖h‖2ε(h),

where ε : Rk → R` satisfies

lim
h→0
‖ε(h)‖2 = 0.

If it exists, the linear function Df(x) : Rk → R` is unique and
called the differential of f at x.

∗Teaching material can be found at https://www.qparis-math.com/
teaching.

1Recall that a subset U of Rk is said to be open if, for all x ∈ U ,
there exists r > 0 such that B(x, r) := {y ∈ Rk|‖x− y‖2 < r} ⊂ U .

Remark 1.1. Note that, for all x ∈ U , Df(x)(h) is indeed
defined for all h ∈ Rk. To see this, note that since U is open,
then for all h ∈ Rk there exists t > 0 small enough such that
x+ th ∈ U . Then, we have by definition of Df(x) that

f(x+ th) = f(x) +Df(x)(th) + t‖h‖2ε(th)

= f(x) + tDf(x)(h) + t‖h‖2ε(th),

where the last line follows from linearity of Df(x). In partic-
ular, we deduce that for all h ∈ Rk, and small enough t > 0,

Df(x)(h) =
f(x+ th)− f(x)

t
− ‖h‖2ε(th),

from which it follows that, for all x ∈ U and all h ∈ Rk,

Df(x)(h) = lim
t→0,t6=0

f(x+ th)− f(x)

t
. (1.1)

Remark 1.2. The above remark shows why it is important
for the domain U of function f to be open. Whenever we
consider a function f : Θ → R` defined on a non open set
Θ ⊂ Rk, it isn’t clear a priori what it means for f to be
differentiable. The convention in this case is very simple: we
say that f : Θ→ R` is differentiable iff there exists an open set
U ⊃ Θ such that f can in fact be defined on U and such that
f : U → R` is differentiable as defined above. The differential
Df(x) of f at every x ∈ Θ is then defined, without ambiguity,
as in (1.1)

Example 1.3. Whenever k = 1, then for any x ∈ U and any
h ∈ R, we recover the more familiar formula

Df(x)(h) = hf ′(x),

where
f ′(x) = lim

t→0,t6=0

f(x+ t)− f(x)

t
∈ R`.

Example 1.4. Suppose that, for all x ∈ Rk, f(x) = Ax + b
for a matrix A ∈ R`×k and a vector b ∈ R`. Then f : Rk → R`

is differentiable and, for all x, h ∈ Rk,

Df(x)(h) = Ah.

1.2 Sum and composition of differentiable functions

Suppose f : U → R` is of the form

f =

n∑
i=1

αifi,

where {αi}ni=1 are real numbers and each fi : U → R` is a
differentiable function. Then, for every x ∈ U and h ∈ Rk,
one easily checks that

Df(x)(h) =

n∑
i=1

αiDfi(x)(h).
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Now suppose that h : U ⊂ Rk → Rm and g : V ⊂ Rm → R`

are two differentiable functions such that h(U) ⊂ V . Then
the function f = g ◦ h : U → R` is differentiable and, for all
x ∈ U ,

Df(x) = Dg(h(x)) ◦Dh(x).

This formula is known as the chain rule.

Example 1.5. Let A ∈ Rm×k, b ∈ Rm and g : Rm → R` be
differentiable. Define f : Rk → R` by f(x) = g(Ax+b). Then
f is differentiable and, for all x, h ∈ Rk,

Df(x)(h) = Dg(Ax+ b)(Ah).

Example 1.6. As a particular case of Example 1.5 (case
m = ` = 1), consider a ∈ Rk, b ∈ R and g : R → R differen-
tiable. Define f : Rk → R by f(x) = g(a>x + b). Then f is
differentiable and, for all x, h ∈ R,

Df(x)(h) = g′(a>x+ b)a>h.

Example 1.7. As another particular case of Example 1.5
(case k = ` = 1), consider a ∈ Rm, b ∈ Rm and g : Rm → R
differentiable. Define f : R→ R by f(t) = g(at+ b). Then f
is differentiable and, for all t, h ∈ R,

Df(t)(h) = hf ′(t) = Dg(at+ b)(ah) = hDg(at+ b)(a),

and in particular

f ′(t) = Dg(at+ b)(a).

Example 1.8. In the context of least-squares regression,
consider the function F : Rk → R defined, for all θ =
(θ1, . . . , θk) ∈ Rk, by

F (θ) =
1

n

n∑
i=1

(Yi −
k∑
j=1

θjfj(Xi))
2 + Ω(θ),

where {(Xi, Yi)}ni=1 is our learning sample of Rd × R-valued
labeled observations, where f1, . . . , fk : Rd → R are fixed refer-
ences functions and where Ω(θ) denotes a regularization term.
Supposing that Ω is differentiable, and denoting for all x ∈ Rd

f(x) := (f1(x), . . . , fk(x))> ∈ Rk,

F is differentiable and, for all θ, h ∈ Rk,

DF (θ)(h) = − 2

n

n∑
i=1

(Yi − θ>f(Xi))f(Xi)
>h+DΩ(θ)(h).

Example 1.9. Similarly, in the context of the convex ap-
proach to binary classification, consider the function F :
Rk → R defined, for all θ = (θ1, . . . , θk) ∈ Rk, by

F (θ) =
1

n

n∑
i=1

ϕ(−Yi
k∑
j=1

θjfj(Xi)) + Ω(θ),

where {(Xi, Yi)}ni=1 is our learning sample of Rd×{−1,+1}-
valued labeled observations, where f1, . . . , fk : Rd → {−1,+1}
are fixed hard classifiers and where Ω(θ) denotes a regulariza-
tion term. Supposing that ϕ : R→ R and Ω are differentiable,
and denoting for all x ∈ Rd

f(x) := (f1(x), . . . , fk(x))> ∈ {−1, 1}k,

F is differentiable and, for all θ, h ∈ Rk,

DF (θ)(h) = − 1

n

n∑
i=1

ϕ′(−Yiθ>f(Xi))Yif(Xi)
>h+DΩ(θ)(h).

1.3 Gradient

Let U ⊂ Rk be open and f : U → R be differentiable.
Introduce the canonical basis e1, . . . , ek of Rk so that any
h = (h1, . . . , hk) ∈ Rk writes (in a unique way)

h =

k∑
j=1

hjej .

Then, for any x ∈ U , we deduce by linearity of Df(x) that

Df(x)(h) =

k∑
j=1

hjDf(x)(ej). (1.2)

It is classical to denote

∂f

∂xj
(x) := Df(x)(ej),

which is called the partial derivative of f at x with respect to
the j-th coordinate. It follows from (1.1) that

∂f

∂xj
(x) = lim

t→0,t6=0

f(x+ tej)− f(x)

t
.

The gradient∇f(x) of f at x is the vector of all partial deriva-
tives of f at x, i.e.

∇f(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xk
(x)

)>
∈ Rk.

Note finally that, for all x ∈ U and all h ∈ Rk, equation (1.2)
reads

Df(x)(h) = h>∇f(x).

Example 1.10. In the context of Example 1.5, when ever
` = 1,

∇f(x) = A>∇g(Ax+ b).

Example 1.11. In the context of Example 1.6,

∇f(x) = g′(a>x+ b)a.

Example 1.12. In the context of Example 1.7,

f ′(t) = a>∇g(at+ b).

Example 1.13. In the context of Example 1.8,

∇F (θ) = − 2

n

n∑
i=1

(Yi − θ>f(Xi))f(Xi) +∇Ω(θ).

Example 1.14. In the context of Example 1.9,

∇F (θ) = − 2

n

n∑
i=1

ϕ′(−Yiθ>f(Xi))Yif(Xi) +∇Ω(θ).

1.4 Interpretation of the gradient

The gradient of a differentiable function f : U ⊂ Rk → R ben-
efits from a fundamental physical interpretation, quite basic
to many optimization algorithms. The next result formalizes
the following fact:

"The vector −∇f(x) points in the direction of fastest imme-
diate decrease of f at x."
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Theorem 1.15. Let U ⊂ Rk be open, f : U → R be differen-
tiable and x ∈ U . For any v ∈ Rk, with ‖v‖2 = 1, set

fv(t) := f(x+ tv),

which is well define for t ∈ R close enough to 0. Then, if
∇f(x) 6= 0, f ′v(0) is minimized for

v∗ = − ∇f(x)

‖∇f(x)‖2
.

Proof. We known from example 1.12 that

f ′v(0) = v>∇f(x).

In particular, it follows from Cauchy-Schwarz’s inequality
that, for every v ∈ Rk with ‖v‖2 = 1,

f ′v(0) ≥ −‖∇f(x)‖2.

Note finally that this lower bound is achieved for v = v∗.

1.5 Taylor’s formula and consequences

We’ll often use the following version of Taylor’s formula.

Theorem 1.16. Let U ⊂ Rk be open and f : U → R be
differentiable. Let x, y ∈ U . Then,

f(y) = f(x) +

∫ 1

0

(y − x)>∇f((1− t)x+ ty) dt.

We may deduce from this formula the following. Recall
that a function f : U → R is called L-Lipschitz if, for all
x, y ∈ U ,

|f(x)− f(y)| ≤ L‖x− y‖2.

Theorem 1.17. Let U ⊂ Rk be open and f : U → R be
differentiable. Then f is L-Lipschitz iff, for all x ∈ U ,

‖∇f(x)‖2 ≤ L.

Proof. Suppose that, for all x ∈ U ,

‖∇f(x)‖2 ≤ L.

Then it follows from Taylor’s formula that, for all x, y ∈ U ,

|f(x)− f(y)| ≤ ( sup
t∈[0,1]

‖∇f((1− t)x+ ty)‖2) ‖x− y‖2

≤ L‖x− y‖2.

Conversely, suppose that f : U → R is differentiable and L-
Lipschitz. Then, since for all x ∈ U and h ∈ Rk we have

h>∇f(x) = lim
t→0,t6=0

f(x+ th)− f(x)

t
,

we get that
|h>∇f(x)| ≤ L‖h‖2.

Taking h = ∇f(x), we get

‖∇f(x)‖2 ≤ L.

2 Convex sets

A set Θ ⊂ Rk is said to be convex if, for all x, y ∈ Θ and all
λ ∈ [0, 1],

(1− λ)x+ λy ∈ Θ.

This section lists some basic properties of convex sets.

Theorem 2.1 (Separation). Let Θ ⊂ Rk be a closed convex
set and x0 ∈ Rk \Θ. Then there exists u ∈ Rk and t ∈ R such
that u>x0 < t and ∀x ∈ Θ, u>x ≥ t.

The previous result means that point x0 /∈ Θ is separated
from Θ by the affine hyperplane {x ∈ Rk : u>x = t}. If Θ
is not closed, we can only guarantee the existence of u ∈ Rk

such that, u>x0 ≤ u>x for all x ∈ Θ. The next result follows
from the separation theorem.

Theorem 2.2 (Supporting hyperplane). Let Θ ⊂ Rk be a
convex set and x0 ∈ ∂Θ be a point on its boundary. Then,
there exists u ∈ Rk, u 6= 0, such that for all x ∈ Θ, u>x0 ≤
u>x.

For most of what we’ll see next, an important notion is
that of the projection onto a closed and convex set.

Theorem 2.3. Let Θ ⊂ Rk be a closed and convex set. Then,
for all x ∈ Rk, there exists a unique point ΠΘ(x) ∈ Θ solving

‖ΠΘ(x)− x‖2 = min
y∈Θ
‖y − x‖2.

The point ΠΘ(x) is called the projection of x onto Θ. In
addition, ΠΘ(x) is the only point in Θ such that,

∀y ∈ Θ, (x−ΠΘ(x))>(y −ΠΘ(x)) ≤ 0.

3 Convex functions

Given a convex set Θ ⊂ Rk, a function f : Θ → R is convex
if, for all x, y ∈ Θ and for all λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

One checks that the function f : Θ→ R is convex if and only
if the epigraph of f , i.e. the set

epi(f) = {(x, t) ∈ Θ× R : f(x) ≤ t},

is a convex subset of Rk × R.

Definition 3.1 (Subgradients). Given a set Θ ⊂ Rk and a
function f : Θ→ R, a vector g ∈ Rk is called a subgradient of
f at x ∈ Θ if,

∀y ∈ Θ, f(y)− f(x) ≥ g>(y − x).

The set of all subgradients of f at x is denoted ∂f(x) and
called the subdifferential of f at x.

Theorem 3.2. Let Θ ⊂ Rk be a convex set and f : Θ → R
be a function.
(1) The function f is convex if, for all x ∈ Θ, ∂f(x) 6= ∅.
(2) If f is convex then, for all x ∈ int(Θ), ∂f(x) 6= ∅.
(3) If f is convex and differentiable, then for all x ∈ int(Θ),
∂f(x) = {∇f(x)}.
(4) If f is convex, then for all x, y ∈ int(Θ), all gx ∈ ∂f(x)
and all gy ∈ ∂f(y),

(gx − gy)>(x− y) ≥ 0.
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Proof. (1) Let x, y ∈ Θ and λ ∈ [0, 1]. Since there exists
g ∈ ∂f((1−λ)x+λy), it follows by definition of a subgradient
that

f(x)− f((1− λ)x+ λy) ≥ λg>(y − x),

and

f(y)− f((1− λ)x+ λy) ≥ (1− λ)g>(x− y).

Multiplying the first inequality by (1 − λ), the second by λ
and summing the obtained inequalities, we obtain that f((1−
λ)x + λy) ≤ (1 − λ)f(x) + λf(y). Since this holds for all
x, y ∈ Θ and all λ ∈ [0, 1], we deduce that f is convex.
(2) Let x ∈ Θ. The point (x, f(x)) belongs to ∂epi(f). Since
epi(f) is a convex set, we deduce from Theorem 2.2 that there
exists (a, b) ∈ Rk × R, (a, b) 6= (0, 0), such that

∀(y, t) ∈ epi(f), a>x+ bf(x) ≥ a>y + bt. (3.1)

Observe that (y, t) ∈ epi(f) implies that (y, t′) ∈ epi(f) for
all t′ ≥ t. Hence, for any y ∈ Θ the above inequality should
hold true for any t ≥ f(y) and in particular when t → +∞
which imposes that b ≤ 0. Now suppose that x ∈ int(Θ).
Then, for ε > 0 small enough, the point z = x + εa belongs
to Θ so that, for all t ≥ f(z),

a>x+ bf(x) ≥ a>z + bt⇔ bf(x) ≥ ε‖a‖2 + bt.

If b = 0 we deduce that a = 0 which is a contradiction. Hence
b < 0. Now for any y ∈ Θ, writing (3.1) for t = f(y) implies
that

f(y)− f(x) ≥ a>(y − y)

|b|
,

which shows that a/|b| ∈ ∂f(x).
(3) Suppose that f is convex, differentiable and take x ∈
int(Θ). For any h ∈ Rk and t ∈ R small enough so that both
x± th ∈ C, a Taylor expansion of f around x reveals that

f(x) = f(x)± t∇f(x)>h+ o(t).

Now for any g ∈ ∂f(x), we have by definition of a subgradient
that

f(x± th) ≥ f(x)± tg>h.

In particular, we deduce that

±t∇f(x)>h+ o(t) ≥ ±tg>h.

This imposes finally that, for all h ∈ Rk, ∇f(x)>h = g>h
which implies that g = ∇f(x).
(4) For all x, y ∈ int(Θ), all gx ∈ ∂f(x) and all gy ∈ ∂f(y),
summing the inequalities f(x)−f(y) ≥ g>y (x−y) and f(y)−
f(x) ≥ g>x (y − x) easily provides the last property.

Theorem 3.3 (First order optimality condition). Let Θ ⊂ Rk

be a convex set and f : Θ→ R be a convex function. Then

x∗ ∈ arg min
x∈Θ

f(x) ⇔ 0 ∈ ∂f(x∗).

Proof. Both conditions are equivalent to the fact that f(x) ≥
f(x∗) + 0>(x− x∗), for all x ∈ Θ.

Theorem 3.4. Let Θ ⊂ Rk be an open convex set and f :
Θ → R be a convex function. Then f is L-Lipschitz if and
only if, for all x ∈ Θ and all g ∈ ∂f(x), ‖g‖2 ≤ L.
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