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I
-
Introduction

We call stochastic ( multi - armed ) bandit
problem the following sequential decision
problem .

( In American slang , a
"
one - armed bandit

"

refers to a slot machine
.

A multi - armed

bandit therefore refers to a collection of
many slot machines )

First let N 32 be known to the

player .
Consider probability distributions

Va ,
. . .

, Vw over IR
,
unknown to the player .

→
At each round t > 1 ,

the player
chooses an action If E { 1 , - . .

,
N }

( in the bandit jargon ,
actions 1

,
- . .

,
N

are also called arms an when the player
chooses action If we say he

"

pulls "
arm

It ) -

→ At the same time
,

the environment
draws a random vector let = (etch , - - - , beIN ))
where • ltli ) ~ Vi

• Variables { ltli ) }E ,
are independent

• Variable ltli ) is independent from { Is }% ,

and { lslj ) }asset- n
, Kj EN

→ The environment only reveals lie , t to
the player .

He incurs this loss

and moves on to the next round -



General Goal :

Minimize the regret which is defined here

as

Rt = EIEIh.CI#-.mg.i:nEIE.eetif .

Alternative representation of the regret :

f probability measure riMj : mean value o

*
.

A

m = Min Mi and e E ang min Mi
is if N is if N

( in particular m
't

= mix )
*

A- i = Mj - the

hilt ) = ¥
,

I { Is -_ i } : Number of times
the player took
action i up to time t .

Lemma t
-

IRT-e.Z.a.no/tiE-LnilT#



Proof . Since he lit ) = It
,

ltli ) HEIT -- i }
we obtain

ELIE.lt LINI = II.
,
Is

,

# Let lil 11 It -- i3]
= EI

,

Elle Iii ] # [ At Iii } ]

( since ltli ) is independent from It )

= II. En
,
mi E Itt { It -- i } ]

( since he Li ) n Vi and definition of mi )

-

- Ia
,
mi E [ II

,

# {It -- i3 ]
= ÷? Ini E [ ni Lt ) ] .

Similarly ,
we easily observe that

remind n Effi , 4- lil ] = Twin
't

= E m

't

E [ ni ITI] ,
N i -4

since clearly ¥
,
hilt ) = T . D



I
-

Reminder : Sub
- gaussian distributions

In the sequel , we 'll focus on the case
where the loss distributions {Vi 3in , are
sub gaussian .

This restriction is made for
simplicity and can be easily removed (at
the price of worse regret bounds ) .

Definition-
A probability distribution v over IR is I
said sub - gaussian with parameter T> oµfafe given a random variable Xrv

,
we

y* XEIR : log # et (
X - EX )

⇐
#

Remarks
.

-

The terminology sub - gaussian comes

from the fact that , if u is the

gaussian distribution or ( m
,
02 ) then ,

ttttth
,

dog # et
(X - m )

=
WI
z

-

-
When v is a general sub - gaussian
distribution with parameter or> o ,

we'll

always implicitly assume that 02 is the smallest
constant for which the property of the
definition holds

,
i. e . that



+ * o
II log Ee

" H - Ex ?oh sup

T is also called the
"

variance proxy
"

of v
and it may be shown that inequality

Var ( v ) E o
'

,

always holds .

As shown by the next result , the
set of sub - gaussian distributions includes
all distributions with bounded support .

-
Lemma 2 ( Hoeffding Lemma )-

fact:¥¥:±÷÷÷÷÷¥m÷: ylog E e
" " - E "

s K¥2
-

8
-

( admitted )

In other words
,
the previous lemma

states that any probability distribution supported
on a finite interval [ a , b] is sub gaussian
with parameter

02 = ( b - a)
2

4-
-



Next
,
we review the concentration properties

of sub
- gaussian random variables

.
From now on

,

we say that a random variable X is sub - gaussian
if its distribution is subgaussian .

-

Lemma 3
-

suppose X is sub - gaussian with parameter
02 > o . Then

,
htt > o

,{ 'II!! - tether!!! e-
% '

, EH - exe - e) ⇐ e-
¥ . )

# ( Ix - Ext > t) s 25¥02.

+

Proof : It is enough to prove the first
inequality . Indeed

,
the 2nd follows immediately

by observing that " X sub - gaussian with

parameter o
'
> o

"

⇐
"
- X sub

- gaussian with
parameter o

'

> o
"

- The 3rd inequality follows
also directly by combining the 1st and 2nd

inequalities .

Now
,
observe that t X > o

,

# ( x - EX > t ) = # ( e'
"" 'EM

,
ett ,

⇐ e-
tt EEN't#× ) ( Markov 's ineq . )

⇐ e-
tt
e'
'¥2

( x sub - gaussian) .



Since this holds for all X > o
,
we deduce that

# ( X - Ex > t ) s info g e
- ttth}

= exp l - spout - III)
= exp f- Ea ) ,

which concludes the proof D .

-
Lemma 4-

suppose { Xi }in= ,
are independent sub - gaussian

random variables with parameters [ of } ,? ,{ """"" ' Y ' the"

¥
,

×, /
is sub

- gaussian with parameter o's ¥=
,

of .

→

Proof : Denote Yi = Xi - Eti .
Then

, byindependence
, we get

log E et
Yi xyi

= log E Tie
= log II. Eet

Yi

= Ei log Eet ?
"



By assumption , we then deduce that

log E e
" Yi

E Ei XII = Ia (Eri ) ,
which concludes the proof - D

we arrive at the most important fact
needed in the sequel , which easily follows
by combining Lemmas 3 and 4 .

- Corollary 5-
suppose Xi

,
. . -

,
Xn iid and sub

- gaussian

÷÷i÷÷÷:÷÷÷: '
" Iandielzzi.xi.iex.se/IeneytE#

Proof : According to Lemma 4
,
Iii

,
Xi is

sub
- gaussian with parameter E n T2 .

Hence
,
Lemma 3 implies that

R ( In t.li - Exa 3 e) = # ( ziti - Ekiti] > ne)
⇐ exist - IIIa)
= exp f- zej) .



Setting It, = exp (-7%-2) ,
the previous

inequality reads ( t a,t > o such that I > I)

# III. Xi - ELM > RIKKI) s Ia .

Changing Xi to - Xi implies the second bound
,j

HI Upper confidence Bound ( UCB ) strategy .

In this section
,
we are back to the

stochastic bandit problem introduced in section I
.

We 'll work under the following assumption :

Assumption ( sub - gaussian losses )-
The unknown loss distributions Vi

, . . .

, VN

are all sub - gaussian with parameter o
'
> o(foraknown.tl

The UCB algorithm we 'll describe next
combines exploration ( of the behavior of
the different actions ) with exploitation
( of good actions already identified ) .



#

UCithm_

Parameters : subgaussian parameter 02 > o
and some parameter a > 2 .

.

Initial isation : Nilo ) = 0 , Thilo 1=0 ,
fit [ N ] .

For t 71 :

→
Select It E arginine Beli )

1 E if N

where -

Fritt - 1) - often) , if hilt - t ) > o
Ritt - 1)Beli )

=/
, if wilt - i ) -- O1- a

and where

thrift - 1) = lslIslH{ Is -- i } .

is the sample average of all losses
obtained from action i at time t - 1

.

→ Receive ht ( It ) and update
wilt ) := tilt - 1) t 1{ It i }

"

and

in
; ( t ) =

"itt - 1) tmilt - 1) tht ( IHH { It -_ i }
ni#
~



Remark : We have phrased the bandit plot in
terms of

"

losses
"

instead of
"

gains
"

as is usually
the case in the

"

literature
,
to stay coherent

with the previous chapter . In this framework ,
the term Beli ) has the flavour of a
Cl 4

lower bound for a confidence interval of
mi instead of an "

upper
"

bound suggested by
the name of the algorithm .

In the UCB

algorithm ,
the regime switches from a more

exploratory phase in the beginning ( the

confidence intervals are wide in the

beginning ) to exploitation as time goes on

( we come to identify m
't with large prob) .

Next we study the performance of the
UCB algorithm .

Theorem 6
-

supposing the distributions of losses are all
sub gaussian with parameter 02 > o

,
the

UCB algorithm with parameter a > 2st÷⇐÷⇒÷fiaE¥+|
Proof : Recall from Lemma 1 that

RT =
apo
Ai EL ni ( TI ]



To prove the result , we therefore need to
show that

,
ti E [ NT such that Ii > o ,

we have the bound

E[ nitti ] E 802 that I - Ho

Hence
, from now on

,
we fix it [NT such

that A-i > o . Denote

# = max { txt : hilt ) s f- 802 that;) } ,

where Tnt denotes the smallest integer larger
or equal to a

.US#bserva--honsaboutt* :

a) t
't
is clearly a random variable

,
due to

the randomness of ni ( t ) ,

t > I
.

b) By construction ,
the first N actions of the

UCB algorithm takes each of the N possible
actions once

.
In particular , this implies that,

t j E [ N ] ,
t t f N

, Nj ( t ) f 1 .

Since

Tal 31 for a > o ,
this implies that t

't

z N .

Also
,
t j E IN ] ,

t t 3N , Nj ( t ) 31 .

c) Finally ,
note that we clearly have that

hilt'tI=f8o2lI Is, seok lI÷ .



In the rest of the proof , we 'll look separately
at the behaviour of ni LT ) on the event {t

't

> T }
and f t's t } .

0ntheerent{t*3

Clearly ,
we have that

EIHL#3T } hilt ) ) f ELA ft
't

> t } T 80291ft ) ]
= f- 802¥11 # (Est )
E (804¥27 t) # Lt

't

> T) . *
,

0ntheeventLt*s
We can write that

E [Htt'T t } hilt ) ) = EIHL# t } II ,A{ It -- i3 ]
= ELI { Ect } ( hilt 't ) t II. ¥+71 It -- i } ) ]

Since hilt
't

) = f- 802f.IT/f8ok,,.h-fTt 1
,

we deduce that



ELA ft'T T } hilt ) ]
⇐ ( 8okah t 1) RHET) t # felt'It5I¥+,HIEi 's]

*
2

Combining *, and *z ,
we deduce that

E [ hilt )] = E [Htt 't> T } hilt I ] t ELHITET} hilts]
E 8021ft t I t E [If# t} II ,¥fHIt=i3]

Since It £2 = Iz ,
the proof is complete

provided we show that

ELHTETJE.ae#ftIIt--i31 s Iz -

In the rest of the proof, we therefore focus on
this fact . Let us rewrite

ELHLEZT } II.t±fHIEi3] = ELIE ,

HETE txt
, IE i }]

= £
,

# ( t's t ET
, It -- i )

Then
,
observe that the following fact holds :



- Observation
-

We have the inclusion of events

4. it: ÷:*::i:i÷÷÷¥i÷m⇒fand Bt :
-

- tymilt -1 ) - ofY,
c mi } .

PFoftwfactbywnkaow.hn
suppose that the above inclusion does not

h¥oL ,
i. e.

,
that we may have :

< tf T
, It = i as well as
-

m^i* ( t - D - T ✓ 2aln c mi
't
*

hit ( t
- l ) 3

and
-

in
; Lt - i ) - r f Zahid z mi . *

hilt - i ) 4

Then
,
we get ( next page )



-

Frix ( t - i ) - o f2dln s mix ( this is *
s )

hint-11
= mi - Aj ( definition of A ;)

But since t - r > t
't

we get by definition of
t 't that

win.

"it -11518 '

I > 802.9ft ,
ch implies that txt
-

I
-

.Ai Z 20 ✓29¥ y
, zgf2alnhilt - t ) hilt - r )

In particular , we get that
- -

m^i* - of29k¥ < mi -zgfzxlnltlnix.lt- t ) hilt - II
-

E nii - o ✓2¥'
( because of

hilt - t ) *
4 ) -

Now this contradicts the fact that
It = i since Di > o imposes that it # i D .

Given this observation
,
we can now

write that



*
t 3N
t

III. Pelt's t ft , It -- i) k I Rft Et ET, It -- i )
t = Ntl -

£ t¥µ+
,

# ( Atl t ¥n+
,

# ( Bt ) .

Finally we'll show that both of these sums are
at most 1-

.
We prove this fact for the 1st sum

only
th - 2

since the 2nd may be treated similarly .

f. ti
For every t z Ntl , ng ( t - 1) 31 .

Hence
, for t > Ntl ,

# LAH -- lets :{ hilt - H -

-
s
, At } )

E
,

R ( nf ( t - 1) =s , At ) (union bound )

⇐ Iii # ↳ jejli's - of > mix)
( since { ljli 's }j > ,

are i. i. d . )

E ti ta ( corollary 5)

= ( t - 2) t
-
t

.

As a result

TIME lat ) s II. m.it -sit
- III. t ''

⇐ sit"dt -- Iz .

This concludes the proof .

I


