Topics in High-Dimensional Probability and Statistics®

Lecture 7: Community detection in random graphs

Contents

1 Stochastic block model 1
1.1 Stochastic block model with two classes . . .. 1
1.2 Recovering communities . . . . .. ... .. .. 1

2 Spectral clustering 1

3 Performance evaluation 2

4 Proof of Theorem 3.1 2

A Appendix 3

1 Stochastic block model

The stochastic block model (SBM) is a general model for gen-
erating non-directed and simple! random graphs exhibiting a
certain community structure. In these few pages, we’ll cover
a small aspect of the theory developed in the context of this
model. For more details in this direction, we refer the reader
to [1] and the references therein.

1.1 Stochastic block model with two classes

Consider V' = {1,...,n} as a vertex set. Consider a fixed
collection of labels

{witice,

assigned to these vertices. The vertices are then split into two
communities

T; € {—1, +1},

Vo={i:z; =-1} and V, ={i:xz; =+1},
of respective sizes

n_=|V_| and ng =|Vy|

Now, fix ¢ < p € (0,1), and consider the random graph G
on these vertices whose adjacency matrix A = (4, ;)7';_; has
random and independent entries, has A; ; = 0, and satisfies

S . p ifximjz—kl,
P(Aij=1)= { q ifzxz; =—L1

In other words, two vertices in the same community (resp.
different communities) are connected with probability p (resp.
q) independently of other connections. Since ¢ < p, a typical
realization of graph G will display a community structure
since vertices in the same community will tend to be more
densely connected.

*Teaching material can be found at https://www.qparis-math.com/
teaching.

LAt most one edge between two vertices and no edge from a vertex
to itself.

1.2 Recovering communities

A statistical question of interest is the following: Observing
only one realization of the adjacency matrix A, and know-
ing connection probabilities p and ¢, can we recover the two
communities V_ and V4 7 The problem is equivalent to re-
covering the (unobserved) labels {z;} ; up to a sign flip and
the goal is therefore to construct

{j:i}zn:b

based only on A, such that the proportion of misclassified
points

T; € {—1, +1},

n

min 1 Z 1{Z; # ex;},

—1,+1
ee{-1+1} n —

is as small as possible (with high probability).

2 Spectral clustering

In this section, we present the main insight we’ll use to con-
struct {#;}" ;. First, for technical reasons, let us introduce
the modified adjacency matrix A° defined as follows. Let
{& 1}, be independent Bernoulli random variables with pa-
rameter p, i.e., such that

P =0)=1-p and P(&=1)=p,
and let
A=A + diag(flv v 7571)

Matrix A° corresponds to the adjacency matrix of the graph
G where loops are added to each vertex with probability p,
and can be easily constructed given A. Then, observe that

)

E[A°] = %17111 42 ; 9™

where 1,, € R” denotes the vector with each entry equal to
land z = (71,...,7,)" is the vector of labels. As a result,

denoting
M=P"9.2T and N =A4°— L—’_qlnl—r,
2 2 "
we obtain

N = M+ (4° - E[4%)),
so that, in particular,
E[M] = M.

Remark 2.1. The above representation is interesting for the
following reason. Suppose we could access to matrix M. Then
we’d be able to reconstruct exactly the two communities. In-
deed, matriz M has rank 1 and the label vector x/+/n is (up to
a sign flip) the unique unit eigenvector of M associated with
its non-zero eigenvalue n(p — q)/2. In practice, we can only
access to one realization of the adjacency matriz A. But from
A, and the knowledge of p and q, we can easily construct M
which is an unbiased estimator of M.


https://www.qparis-math.com/teaching
https://www.qparis-math.com/teaching

As result, we can consider the following simple strategy:
Let

n
M = E )\iuiu;r,
i=1

be a spectral decomposiAtion of M, where \y > Ao > --- > )\,
are the eigenvalues of M and wuy,...,u, € R™ are associated
orthonormal eigenvectors. Then, for 1 < i < n, we define

if ui >0,
if uj <0,

+1

o (2.1)

&; = sign(uj) = {
where u} denotes the i-th coordinate of u;.

3 Performance evaluation

In the next section, we are going to prove the following result.

Theorem 3.1. Suppose Z; is constructed as in (2.1). Then
for any 6 € (0,1), the proportion of misclassified points sat-
isfies,
1 n
min — 1{%; # ex;
ee{—1,+1} n; { ¢ 7& l}
128

< 1 2n\ 4 loo? 2n
————— max —1,= —
=02 (v — (])2 ax § Up,q 108 AR 0g S )

with probability at least 1 — §, where

3ny. —n_ ne —n_)>
Up,q = %UP + \/(+4)Ug + 1’L+TL,U§7

and vy, = u(l — u).

Let us discuss the implications of this result in the simple
situation where

n—=ny =2
2

In this case we get

vp + p+q
w25 20 (55).

and the upper bound in Theorem 3.1 is less than

X {m log (2;) ,(p_cﬁ log? <2:) } . (3.)

The above expression goes to 0 with the size n of the graph
whenever ¢ < p are independent of n which corresponds to
the so called dense regime. The sparse regime corresponds to

(=l

Qp
p=—
n

and ¢= —,
n

where b, < a, and a,,b, < n. One easily checks that, for
any o > 0 and any 0 < b < a, if

an =alog'™n and b, =blog' % n,

the expression (3.1) tends to 0 with n. Using slightly more
sophisticated proofs than the one we present next, we can
actually show that the proportion of missclassified vertices
tends to zero with high probability provided

4 Proof of Theorem 3.1

We start with a general statement connecting the proportion
of misclassified points and the operator norm of

A° — E[A°).

Lemma 4.1. Suppose I; is constructed as in (2.1), then the
proportion of misclassified points satisfies,

1< 32
i — 1{z; < —= _||A° — E[A°]|3,..
min — > 1{2 #g‘r}an(p_qQH [A%]115p

ce{~1+1} n = )
Proof. For all 1 <i <n,

1{&; # ex;} = 1{sign(u}) # ex;}
— 1 {sign(viml) # ex:}
< (Vnuy — ex;)?

€Z; )2.

NG

As a result, the proportion of misclassified points satisfies

=n(u} —¢

n

. 1 . .
min — Z 1{%; #£ex;} < e min

||U1 -
se{-1,+1} N — {-1,+1}

T 2
Eﬁﬂz

Since uy and x/4/n are both unit eigenvectors associated to
the largest eigenvalue of M and M respectively, and since
the largest eigenvalue of M is n(p — ¢)/2, the Davis-Kahane
sin(#) theorem (Theorem A.1) implies that

. X 2 32 ~ 2
N[ I LR ¢ V'
SE{Izligrl} ||U1 \/5”2 = ng(p — q)g H Hop
32
= Ao —_ E AO 2
nQ(p_q)QH [ ]”op?
which concludes the proof. O

We now provide a bound for the operator norm of
A° — E[A°].

Lemma 4.2. For any 6 € (0,1),

2 4 2
| A° — E[A°]||op < max{ 4v, 4 log (;) '3 log (;) } ,

with probability at least 1 — §, where

3ng —n_ ny —n_)>2
Up,q:7+2 Up+\/< u 1 ) vZ+nin_v2,

and vy, = u(l — u).

Proof. We are going to control ||A° — E[A°]||op using the Ma-
trix Bernstein inequality (Theorem A.2). First, note that

A° —E[A°] =) X",

i<j

where X7 = (X,i]l) € R™™" denotes the random matrix de-
fined by X = 0if (k,1) ¢ {(i, ), (j,4)} and

X{ = X = A7 el



Note that all matrices (X*7);<; are all independent and sat-
isfy N

X lop = [AZ; — E[AZ;]] < 1.
Note finally that, for all i < j, E[(X%7)?] € R"*" is the matrix
whose (k,1)-entry is 0 if (k,1) ¢ {(4,7), (4,%)} and whose (i, 5)
and (j,4) entries are both equal to

p(1—p)
q(1—q)

As a result, for some permutation matrix @,

05127 — p(1=p)ln,n, q(l—q)ln, n
EE[(X e ( a1 =q)ln_n, p(L=p)Lln_n_

if Tilj = —‘rl,
if T = —1.

var(a?,) = {

o

where 1,, ,, denotes the n X m matrix with all entries equal
to 1. In particular, we deduce (and leave it as an exercise)
that

vpa(n) = || D E(X)?]op

i<j
2
(ny —n_)
2 2
Vp + \/ 1 vy +Nyn_vg,

3ng —n_
T2
where
vp:=p(1—p) and v, =gq(l—gq).
A direct application of Theorem A.2 therefore implies that,
for every § € (0,1),

| A° — E[A°]lop < max{ 4v(n)log <2:),§10g (?) } ,

with probability at least 1 — §. O

A Appendix

Theorem A.1 (Davis-Kahan sin(f) theorem). Let A,B €
R™*™ be two symmetric matrices. Consider the spectral de-
compositions

n

T

A= E /\iuiui
i=1

where \y > Ao > ... (resp. p1 > po > ... ) are the eigenval-
ues of A (resp. B) and u; (resp. v;) is a unit eigenvector of
A (resp. B) associated to eigenvalue \; (resp. u;). Then, for
all 1 <i<n,

n
and B = ZHWW,’T,

i=1

2\/§||A — BHOP
mingi {|Ai — A;|}
Theorem A.2 (Matrix Bernstein). Let Xi,...,X,, € R4

be independent random symmetric matrices. Suppose in ad-
dition that there exists B > 0 such that, for all 1 <i <m,

min

S . <
ec{—1,+1} Hul EUZH2 -

E[Xl] = 0d><d and HXiHOP S B.

Then, for all t > 0,

P (II > Xillop > t) < 2dexp <—W> ’

=1 3

where
m

1>~ ELXllop-

i=1

v(m) :=

In particular, for all 6 € (0,1),
- 2d\ 4B 2d
DIRIE max{ 4o(m)log (5),Slog (5) } |

with probability at least 1 — 9.
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