
Topics in High-Dimensional Probability and Statistics∗

Lecture 7: Community detection in random graphs
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1 Stochastic block model

The stochastic block model (SBM) is a general model for gen-
erating non-directed and simple1 random graphs exhibiting a
certain community structure. In these few pages, we’ll cover
a small aspect of the theory developed in the context of this
model. For more details in this direction, we refer the reader
to [1] and the references therein.

1.1 Stochastic block model with two classes

Consider V = {1, . . . , n} as a vertex set. Consider a fixed
collection of labels

{xi}ni=1, xi ∈ {−1,+1},

assigned to these vertices. The vertices are then split into two
communities

V− = {i : xi = −1} and V+ = {i : xi = +1},

of respective sizes

n− = |V−| and n+ = |V+|.

Now, fix q < p ∈ (0, 1), and consider the random graph G
on these vertices whose adjacency matrix A = (Ai,j)

n
i,j=1 has

random and independent entries, has Ai,i = 0, and satisfies

P(Ai,j = 1) =

{
p if xixj = +1,
q if xixj = −1.

In other words, two vertices in the same community (resp.
different communities) are connected with probability p (resp.
q) independently of other connections. Since q < p, a typical
realization of graph G will display a community structure
since vertices in the same community will tend to be more
densely connected.

∗Teaching material can be found at https://www.qparis-math.com/
teaching.

1At most one edge between two vertices and no edge from a vertex
to itself.

1.2 Recovering communities

A statistical question of interest is the following: Observing
only one realization of the adjacency matrix A, and know-
ing connection probabilities p and q, can we recover the two
communities V− and V+ ? The problem is equivalent to re-
covering the (unobserved) labels {xi}ni=1 up to a sign flip and
the goal is therefore to construct

{x̂i}ni=1, x̂i ∈ {−1,+1},

based only on A, such that the proportion of misclassified
points

min
ε∈{−1,+1}

1

n

n∑
i=1

1{x̂i 6= εxi},

is as small as possible (with high probability).

2 Spectral clustering

In this section, we present the main insight we’ll use to con-
struct {x̂i}ni=1. First, for technical reasons, let us introduce
the modified adjacency matrix A◦ defined as follows. Let
{ξi}ni=1 be independent Bernoulli random variables with pa-
rameter p, i.e., such that

P(ξi = 0) = 1− p and P(ξi = 1) = p,

and let
A◦ = A+ diag(ξ1, . . . , ξn).

Matrix A◦ corresponds to the adjacency matrix of the graph
G where loops are added to each vertex with probability p,
and can be easily constructed given A. Then, observe that

E[A◦] =
p+ q

2
1n1

>
n +

p− q
2

xx>,

where 1n ∈ Rn denotes the vector with each entry equal to
1 and x = (x1, . . . , xn)

> is the vector of labels. As a result,
denoting

M =
p− q
2

xx> and M̂ = A◦ − p+ q

2
1n1

>
n ,

we obtain
M̂ =M + (A◦ − E[A◦]),

so that, in particular,

E[M̂ ] =M.

Remark 2.1. The above representation is interesting for the
following reason. Suppose we could access to matrixM . Then
we’d be able to reconstruct exactly the two communities. In-
deed, matrixM has rank 1 and the label vector x/

√
n is (up to

a sign flip) the unique unit eigenvector of M associated with
its non-zero eigenvalue n(p − q)/2. In practice, we can only
access to one realization of the adjacency matrix A. But from
A, and the knowledge of p and q, we can easily construct M̂
which is an unbiased estimator of M .
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As result, we can consider the following simple strategy:
Let

M̂ =

n∑
i=1

λiuiu
>
i ,

be a spectral decomposition of M̂ , where λ1 ≥ λ2 ≥ · · · ≥ λn
are the eigenvalues of M̂ and u1, . . . , un ∈ Rn are associated
orthonormal eigenvectors. Then, for 1 ≤ i ≤ n, we define

x̂i = sign(ui1) =

{
+1 if ui1 ≥ 0,
−1 if ui1 < 0,

(2.1)

where ui1 denotes the i-th coordinate of u1.

3 Performance evaluation

In the next section, we are going to prove the following result.

Theorem 3.1. Suppose x̂i is constructed as in (2.1). Then
for any δ ∈ (0, 1), the proportion of misclassified points sat-
isfies,

min
ε∈{−1,+1}

1

n

n∑
i=1

1{x̂i 6= εxi}

≤ 128

n2(p− q)2
max

{
vp,q log

(
2n

δ

)
,
4

9
log2

(
2n

δ

)}
,

with probability at least 1− δ, where

vp,q =
3n+ − n−

2
vp +

√
(n+ − n−)2

4
v2p + n+n−v2q ,

and vu := u(1− u).

Let us discuss the implications of this result in the simple
situation where

n− = n+ =
n

2
.

In this case we get

vp,q = n

(
vp + vq

2

)
≤ n

(
p+ q

2

)
,

and the upper bound in Theorem 3.1 is less than

max

{
c1(p+ q)

(p− q)2n
log

(
2n

δ

)
,

c2
(p− q)2n2

log2
(
2n

δ

)}
. (3.1)

The above expression goes to 0 with the size n of the graph
whenever q < p are independent of n which corresponds to
the so called dense regime. The sparse regime corresponds to

p =
an
n

and q =
bn
n
,

where bn ≤ an and an, bn � n. One easily checks that, for
any α > 0 and any 0 < b < a, if

an = a log1+α n and bn = b log1+α n,

the expression (3.1) tends to 0 with n. Using slightly more
sophisticated proofs than the one we present next, we can
actually show that the proportion of missclassified vertices
tends to zero with high probability provided

4 Proof of Theorem 3.1

We start with a general statement connecting the proportion
of misclassified points and the operator norm of

A◦ − E[A◦].

Lemma 4.1. Suppose x̂i is constructed as in (2.1), then the
proportion of misclassified points satisfies,

min
ε∈{−1,+1}

1

n

n∑
i=1

1{x̂i 6= εxi} ≤
32

n2(p− q)2
‖A◦ − E[A◦]‖2op.

Proof. For all 1 ≤ i ≤ n,

1{x̂i 6= εxi} = 1{sign(ui1) 6= εxi}
= 1{sign(

√
nui1) 6= εxi}

≤ (
√
nui1 − εxi)2

= n(ui1 − ε
xi√
n
)2.

As a result, the proportion of misclassified points satisfies

min
ε∈{−1,+1}

1

n

n∑
i=1

1{x̂i 6= εxi} ≤ min
ε∈{−1,+1}

‖u1 − ε
x√
n
‖22.

Since u1 and x/
√
n are both unit eigenvectors associated to

the largest eigenvalue of M̂ and M respectively, and since
the largest eigenvalue of M is n(p − q)/2, the Davis-Kahane
sin(θ) theorem (Theorem A.1) implies that

min
ε∈{−1,+1}

‖u1 − ε
x√
n
‖22 ≤

32

n2(p− q)2
‖M̂ −M‖2op

=
32

n2(p− q)2
‖A◦ − E[A◦]‖2op,

which concludes the proof.

We now provide a bound for the operator norm of

A◦ − E[A◦].

Lemma 4.2. For any δ ∈ (0, 1),

‖A◦ − E[A◦]‖op ≤ max

{√
4vp,q log

(
2n

δ

)
,
4

3
log

(
2n

δ

)}
,

with probability at least 1− δ, where

vp,q =
3n+ − n−

2
vp +

√
(n+ − n−)2

4
v2p + n+n−v2q ,

and vu := u(1− u).

Proof. We are going to control ‖A◦−E[A◦]‖op using the Ma-
trix Bernstein inequality (Theorem A.2). First, note that

A◦ − E[A◦] =
∑
i≤j

Xi,j ,

where Xi,j = (Xi,j
k,l) ∈ Rn×n denotes the random matrix de-

fined by Xi,j
k,l = 0 if (k, l) /∈ {(i, j), (j, i)} and

Xi,j
i,j = Xi,j

j,i = A◦i,j − E[A◦i,j ].

2



Note that all matrices (Xi,j)i≤j are all independent and sat-
isfy

‖Xi,j‖op = |A◦i,j − E[A◦i,j ]| ≤ 1.

Note finally that, for all i ≤ j, E[(Xi,j)2] ∈ Rn×n is the matrix
whose (k, l)-entry is 0 if (k, l) /∈ {(i, j), (j, i)} and whose (i, j)
and (j, i) entries are both equal to

Var(A◦i,j) =

{
p(1− p) if xixj = +1,
q(1− q) if xixj = −1.

As a result, for some permutation matrix Q,∑
i≤j

E[(Xi,j)2] = Q

(
p(1− p)1n+,n+

q(1− q)1n+,n−

q(1− q)1n−,n+
p(1− p)1n−,n−

)
Q>,

where 1n,m denotes the n ×m matrix with all entries equal
to 1. In particular, we deduce (and leave it as an exercise)
that

vp,q(n) := ‖
∑
i≤j

E[(Xi,j)2]‖op

=
3n+ − n−

2
vp +

√
(n+ − n−)2

4
v2p + n+n−v2q ,

where
vp := p(1− p) and vq = q(1− q).

A direct application of Theorem A.2 therefore implies that,
for every δ ∈ (0, 1),

‖A◦ − E[A◦]‖op ≤ max

{√
4v(n) log

(
2n

δ

)
,
4

3
log

(
2n

δ

)}
,

with probability at least 1− δ.

A Appendix

Theorem A.1 (Davis-Kahan sin(θ) theorem). Let A,B ∈
Rn×n be two symmetric matrices. Consider the spectral de-
compositions

A =

n∑
i=1

λiuiu
>
i and B =

n∑
i=1

µiviv
>
i ,

where λ1 ≥ λ2 ≥ . . . (resp. µ1 ≥ µ2 ≥ . . . ) are the eigenval-
ues of A (resp. B) and ui (resp. vi) is a unit eigenvector of
A (resp. B) associated to eigenvalue λi (resp. µi). Then, for
all 1 ≤ i ≤ n,

min
ε∈{−1,+1}

‖ui − εvi‖2 ≤
2
√
2‖A−B‖op

minj 6=i{|λi − λj |}
.

Theorem A.2 (Matrix Bernstein). Let X1, . . . , Xm ∈ Rd×d

be independent random symmetric matrices. Suppose in ad-
dition that there exists B > 0 such that, for all 1 ≤ i ≤ m,

E[Xi] = 0d×d and ‖Xi‖op ≤ B.

Then, for all t > 0,

P

(
‖
m∑
i=1

Xi‖op ≥ t

)
≤ 2d exp

(
− t2

2v(m) + 2Bt
3

)
,

where

v(m) := ‖
m∑
i=1

E[X2
i ]‖op.

In particular, for all δ ∈ (0, 1),

‖
m∑
i=1

Xi‖op ≤ max

{√
4v(m) log

(
2d

δ

)
,
4B

3
log

(
2d

δ

)}
,

with probability at least 1− δ.

References

[1] E. Abbe. Community detection and stochastic block mod-
els: Recent developments. Journal of Machine Learning
Research, 18(177):1–86, 2018.

3


	Stochastic block model
	Stochastic block model with two classes
	Recovering communities

	Spectral clustering
	Performance evaluation
	Proof of Theorem 3.1
	Appendix

