Topics in High-Dimensional Probability and Statistics®

Lecture 4: Random projections and the Johnson-Lindenstrauss lemma
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1 Approximate isometries

Consider n distinct data points z1,...,z, in RP considered
deterministic (all the following results may be easily extended
to the case of random points via conditioning). If the dimen-
sion D is very large, processing this data for some given task
may be computationally demanding. An interesting problem
is to figure out whether there exists a way to transform the
high-dimensional data points z1, ..., z, € R, through some
map

T:RP 5 R? for some d< D,

into lower dimensional data points T'(z1),...,T(x,) € R?
without losing too much information about the original data.
One way to guarantee that map T preserves the informa-
tion of the data is to require the geometry of the data set to be
completely preserved, i.e., to require that T : {z1,...,z,} —
R? is an isometry. Precisely, this means that, for all i # j,
1T(x:) = T(z5)ll2 = llwi — 22,
where, on the left hand-side, ||.||2 refers to the euclidean norm
in R? while, on the right hand-side, ||. |2 refers to the euclidean
norm in RP.

This isn’t really a reasonable requirement if we think of
the data points as points sampled from a distribution with
a density with respect to Lebesgue measure. Indeed, in this
case for any d < D, the points x1,...,z, all belong to a
subspace of RP with probability 0 so that mapping all these
points isometrically into a lower dimensional space is likely to
fail with high probability.

But one can be a little less demanding, and require T to
be a approximate isometry. To be more precise, for a fixed

€ (0,1), we could only ask to have, for all i # j,
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The goal of this lecture is to show that we can construct a
random and linear map T : R? — R? such that, for any every

*Teaching material can be found at https://www.qparis-math.com/
teaching.

g,0 € (0,1), the above property holds with probability 1 — §
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and independently of the dimension D.

2 Reminder

We recall a few facts, seen in lecture 2, that will be useful in
the proof of the Johnson-Lindenstrauss lemma below.

A basic result of interest will be the following simple ver-
sion of the Bernstein’s concentration inequality.

Lemma 2.1. Let Y7,...,Y, be independent random vari-
ables. Suppose that there exists s2,b > 0 such that, for all
1<i<n and for all € [-1/b,1/b],
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Then, for allt > 0,
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The second important observation is that, given a real
valued and sub-gaussian random variable X with variance
proxy o2, the variable X2 satisfies,

log E exp(6{Y; — EYi}) <

Vo € (—l l) log E[exp(8{X? — EX?})] < i
o) OBEINP 2(1 - 0a)’
with
a = 4dec?.
In particular,
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Vo € | 55’ Qa]’ log E[exp(6{X* —EX*})] < 5

3 Johnson-Lindenstrauss lemma

Let X = {z1,...,7,} C RP be a set of n distinct data points,
considered deterministic, and fix

g,0 € (0,1).

Theorem 3.1. Let M € R™P be a random matric
whose Tows Ry, ..., Rq € RP are independent, centered and

isotropic, i.e., such that
E[R]=0 and E[R;R]]=

Suppose that each R; is sub-gaussian with variance prozy at
most 0. Define finally
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Then, provided
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1T (i) = T(x;
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we have

P(W;éjzl—gg )”2<1+5>_ 1—6.
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By linearity of 7', the statement we need to prove is then
equivalent to

Proof. Denote

P T(2)|3 -1 :
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Using a union bound, observe that

P T(z)||3 -1
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As a result, it is enough to prove that, for all z € Z,
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For z € Z, note that

As a result,
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Note finally that, since ||z||2 = 1 for every z € Z, each random
variable (R;,z) is sub-gaussian with variance proxy at most
02. According to results mentioned in the previous section,

this implies that variables
Y; = <R1; Z>27
satisfy, for all 1 <7 < d and for all § € [—-1/b,1/1],
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where b = 8ec? and s = 32¢20*. As a result, we deduce

that, for every z € Z,

P(IIT(2)]13 — 1] > €) < 2exp

where the last inequality follows from the fact that ¢ € (0,1)
and that 02 > 1/4e by assumption. To sum up, the statement
follows provided

2 exp (

which is equivalent to
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4 Examples

We give two explicit constructions of matrix M satisfying the
assumptions of the theorem.

Example 4.1. Suppose that M = (M;;) where entries
M, ; are independent and, for all i € {1,...,d} and all

je{lﬁ"'7D})

P(Mij = 71) = P(MiJ' == +1) = =

)

Then it satisfies the assumptions of Theorem 8.1 with o = 1.

Example 4.2. Suppose that M = (M, ;) where entries
M, ; are independent and, for all i € {1,...,d} and all
jed{l,...,D},

M, ; ~N(0,1).

Then it satisfies the assumptions of Theorem 8.1 with o = 1.

5 Note

For an application of Theorem 3.1 in the context of clustering,
we refer the reader to [2]. We also recommend Chapter 5 in [1]
for further applications of the Johnson-Lindenstrauss lemma.
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