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Lecture 2: Tools from probability theory
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1 On the Gaussian distribution

The goal of this section will be to have a first look at the
concentration properties of random variables, i.e., to quantify
their fluctuations around their expectation. Due to its univer-
sality, illustrated by the central limit theorem, the gaussian
distribution is a natural first example that we’ll shortly fo-
cus on. The results provided in this section will serve as a
benchmark for further discussions. Let

φ(t) :=
1√
2π

exp

(
− t

2

2

)
,

be the density function of the gaussian N(0, 1) distribution.

Theorem 1.1. Suppose X follows the gaussian distribution
N(0, 1). Then, for all t > 0,

tφ(t)

1 + t2
≤ P{X > t} ≤ φ(t)

t
. (1.1)

Proof. Observe first that for any integrable function f : R→
(0,+∞), and any t > 0,∫ +∞

t

f(x)dx ≤ 1

t

∫ +∞

t

xf(x)dx.

Applying this inequality to φ yields, for all t > 0,

P{X > t} =

∫ +∞

t

φ(x) dx

≤ 1

t

∫ +∞

t

xφ(x)dx

=
φ(t)

t
.

For the second part, we integrate by parts the inequality that
we have just obtained,

0 ≤ −xP{X > x}+ φ(x), x > 0,

∗Teaching material can be found at https://www.qparis-math.com/
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to get

0 ≤
∫ +∞

t

−xP{X > x}+ φ(x) dx

=
t2

2
P{X > t} −

∫ +∞

t

x2

2
φ(x)dx+

∫ +∞

t

φ(x) dx

=
t2

2
P{X > t} − t

2
φ(t) +

1

2

∫ +∞

t

φ(x) dx

=
(1 + t2)

2
P{X > t} − t

2
φ(t),

where we have used that φ′(t) = −tφ(t).

The next inequality improves the previous upper bound
for small values of t > 0.

Theorem 1.2. Suppose X follows the gaussian distribution
N(0, 1). Then, for all t > 0,

P{X > t} ≤ 1

2
exp

(
− t

2

2

)
. (1.2)

Proof. Consider the function F : R+ → R, defined by

F (t) =
1

2
exp

(
− t

2

2

)
− P{X > t}.

We need to show that F takes only positive values. To that
aim, observe that F is continuously differentiable on R+, that
F (0) = 0, and that

F ′(t) = − t
2

exp

(
− t

2

2

)
− d

dt
1√
2π

∫ +∞

t

exp

(
−x

2

2

)
dx

=

{
1√
2π
− t

2

}
exp

(
− t

2

2

)
.

This already proves that F is positive on [0,
√

2/π]. Finally,
for t >

√
2/π, using the same trick as for the upper bound in

Theorem 1.1, we obtain

P{X > t} =
1√
2π

∫ +∞

t

exp

(
−x

2

2

)
dx

≤ 1√
2π

√
π

2

∫ +∞

t

x exp

(
−x

2

2

)
dx

=
1

2
exp

(
− t

2

2

)
,

which implies that F is positive for t >
√

2/π and completes
the proof.

Remark 1.3. One can show that the constant 1/2 in Theo-
rem 1.2 is optimal in the sense that

sup
t>0

{
exp

(
t2

2σ2

)
P{X > t}

}
=

1

2
.
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Remark 1.4. Theorems 1.1 and 1.2 apply to the N(m,σ2)
distribution for any m ∈ R and σ2 > 0 by a simple scaling
argument: If X ∼ N(m,σ2) then

X −m
σ

∼ N(0, 1).

2 The Cramér-Chernoff method

The results derived in the previous section rely heavily on
the specific form of the gaussian density. In particular, one
cannot reproduce the previous arguments in situations where
the information on the distribution of X is of more general
nature. The present section develops a tool to deal with more
complex scenarios. We start with a very basic result.

Theorem 2.1 (Markov’s inequality). Let X be a non-
negative random variable such that EX < +∞. Then, for
all t ≥ 0,

tP{X ≥ t} ≤ EX.

Proof. We simply notice that,

tP{X ≥ t} = tE1{X ≥ t} ≤ E[X1{X ≥ t}] ≤ EX,

for any t ≥ 0.

Exercise 2.2 (Chebychev’s inequality). Using Markov’s in-
equality, show that for any R-valued random variable X such
that EX2 < +∞ and any t ≥ 0,

t2P{|X − EX| ≥ t} ≤ V(X).

The simple idea used in the proof of Markov’s inequal-
ity can be generalised and turned into a powerful method
known as the Cramér-Chernoff method. To describe this
method, consider a random variable X and any nonnegative
and strictly increasing ϕ : R→ R+. Then, for all t ≥ 0,

ϕ(t)P{X ≥ t} = ϕ(t)P{ϕ(X) ≥ ϕ(t)} ≤ Eϕ(X),

by Markov’s inequality. In particular, since P{X ≥ t} does
not depend on the choice of ϕ, it follows that

P{X ≥ t} ≤ inf
ϕ∈Φ

ϕ(t)−1Eϕ(X), (2.1)

for any collection Φ of nonnegative and increasing functions
ϕ : R → R+. Due to the specific algebraic properties of the
exponential function, a very convenient choice for the class Φ
is provided by the collection of all functions x 7→ eθx, θ > 0.

Definition 2.3 (Moment generating function). The moment
generating function1 (MGF) of X, is defined, for all θ ∈ R,
by

MX(θ) := E exp(θX).

We’ll denote, for θ ∈ R,

ΛX(θ) = logMX(θ).

The most important insight, relative to the MGF, is sum-
marised in the following result.

1Also referred to as the Laplace transform of the distribution of X

Theorem 2.4 (Cramér-Chernoff). For any real-valued ran-
dom variable X and any t ∈ R, defining

Λ∗X(t) := sup
θ>0
{θt− ΛX(θ)} ,

we have
P{X > t} ≤ e−Λ∗

X(t).

Proof. For all θ > 0, using that thet function x 7→ eθx is
increasing, we deduce that for all t ∈ R,

P{X > t} = P{exp(θX) > exp(θt)}
≤ exp(−θt) E exp(θX)

= exp(−θt+ ΛX(θ)),

where the second line follows from Markov’s inequality. The
result follows by optimising the bound in θ > 0.

Exercise 2.5 (Bernoulli distribution). For p ∈ (0, 1), con-
sider a random variable ξ such that

P{ξ = 0} = 1− p and P{ξ = 1} = p,

and let X = ξ − p. For all t ∈ (0, 1− p), show that

P{X > t} ≤ e−hp(t+p),

where
hp(u) := u log

u

p
+ (1− u) log

1− u
1− p

.

Note that, for t ≥ 1− p, we obviously have P{X > t} = 0.

The algebraic property ex+y = exey of the exponential
function implies that the MGF behaves favorably in the con-
text of independent random variables as described in the next
exercise.

Exercise 2.6. Let X1, . . . , Xn be independent random vari-
ables and set X = X1 + · · ·+Xn. Then, for all θ ∈ R,

ΛX(θ) =
n∑
i=1

ΛXi
(θ).

In particular, if the variables X1, . . . , Xn are i.i.d., then for
all t ∈ R,

Λ∗X(t) = nΛ∗X1

(
t

n

)
.

Exercise 2.7 (Binomial distribution). Consider a variable
ξ distributed according to the Binomial distribution with pa-
rameters n ≥ 1 and p ∈ (0, 1), i.e.

P{ξ = k} =

(
n

k

)
pk(1− p)n−k,

and let X be the centered random variable X = ξ−np. Using
Exercises 2.5 and 2.6, show that for all t ∈ (0, n(1− p)),

P{X > t} ≤ e−nhp( t
n +p),

where hp is as in Exercise 2.5. Note that for t ≥ n(1− p), we
have P{X > t} = 0.

We end the section by studying the case of the gaussian
distribution.

2



Lemma 2.8. Let m ∈ R and σ2 > 0. Suppose that X follows
the gaussian distribution N(m,σ2). Then, for all θ ∈ R,

log E exp(θ{X −m}) =
θ2σ2

2
.

Proof. Without loss of generality, suppose m = 0. Then, for
θ ∈ R, we obtain

E exp(θX)

=
1

σ
√

2π

∫ +∞

−∞
exp

(
θx− x2

2σ2

)
dx

=
1

σ
√

2π

∫ +∞

−∞
exp

(
θ2σ2

2
− (x− σ2θ)2

2σ2

)
dx

= exp

(
θ2σ2

2

)
1

σ
√

2π

∫ +∞

−∞
exp

(
− (x− σ2θ)2

2σ2

)
dx

= exp

(
θ2σ2

2

)
,

which concludes the proof.

Using the computation of the previous Lemma, applying
Theorem 2.4 to the gaussian distribution yields that, for all
t > 0,

P{X −m > t} = P{X −m < −t} ≤ exp

(
− t2

2σ2

)
,

whenever X ∼ N(m,σ2). Comparing this bound with The-
orems 1.1 and 1.2, we observe that the method presented in
Theorem 2.4 gives a result only slightly weaker than if we
had used the specific form of the gaussian density as in para-
graph ??. This advocates for a use of Theorem 2.4 in more
general situations. A case of particular interest is the case of
subgaussian random variables.

3 Subgaussian random variables

In the previous section we have shown how the deviations
of a random variable X can be investigated by studying the
behavior of its MGF. Motivated by the result of Lemma 2.8,
we introduce a specific class of distributions that have lighter
tails than gaussian distributions.

Definition 3.1. A real-valued random variable X (or its dis-
tribution) is said to be subgaussian if there exists s2 > 0 such
that,

∀θ ∈ R : log E exp(θ{X − EX}) ≤ θ2s2

2
.

Whenever this holds, we’ll denote X ∈ sg(s2). The smallest
s2 > 0 for which X ∈ sg(s2) is called the variance proxy of
X, sometimes denoted ‖X‖2vp, and given by

‖X‖2vp = sup
θ 6=0

2

θ2
log E exp(θ{X − EX}).

According to Lemma 2.8, a gaussian variable is clearly
subgaussian. Other examples of subgaussian variables are
discussed below.

Remark 3.2. The notation ‖X‖2vp relates to the fact that the
variance proxy is a squared semi-norm on the set of subgaus-
sian random variables. More precisely, the reader may show
as an exercise that the set of subgaussian random variables
is indeed an R-vector space and that the following properties
hold.
(1) For any subgaussian variable X and any α ∈ R,

‖αX‖vp = |α| ‖X‖vp.

(2) For any subgaussian variables X,Y (non necessarily in-
dependent)

‖X + Y ‖vp ≤ ‖X‖vp + ‖Y ‖vp.

(3) For any subgaussian variable X,

‖X‖vp = 0 ⇔ X = EX a.s..

In particular, ‖.‖vp defines a norm on the space of centered
subgaussian random variables.

Theorem 3.3. Suppose that X is subgaussian. Then, for all
t ∈ R,

P{X − EX > t} ∨ P{X − EX < −t} ≤ exp

(
− t2

2‖X‖2vp

)
,

where a ∨ b := max{a, b}.

Proof. By definition, X is subgaussian if and only if −X is
subgaussian and ‖X‖2vp = ‖−X‖2vp. As a result, it is enough
to prove the first inequality. Now, combining Theorem 2.4
and Definition 3.1, we obtain

P{X − EX > t} ≤ exp

(
− sup
θ≥0

{
θt−

θ2‖X‖2vp

2

})

= exp

(
− t2

2‖X‖2vp

)
,

which completes the proof.

The class of subgaussian random variables is much wider
than the class of gaussian variables. The next result shows, for
instance, that any bounded random variable is subgaussian.

Lemma 3.4 (Hoeffding’s lemma). Let X be an [a, b]-valued
random variable for −∞ < a < b < +∞. Then, for all θ ∈ R,

log E exp(θ{X − EX}) ≤ θ2(b− a)2

8
.

In other words ‖X‖2vp ≤ (b− a)2/4.

Proof. Note that, by the convexity of the exponential func-
tion,

eθx ≤ x− a
b− a

eθb +
b− x
b− a

eθa,

for all a ≤ x ≤ b. Exploiting the fact that E[X − EX] = 0,
and introducing the notation p = −a/(b− a), we deduce that

E exp(θ{X − EX}) ≤ b

b− a
eθa − a

b− a
eθb

= (1− p+ peθ(b−a))e−θp(b−a)

= ef(u),

3



where u = θ(b−a) and f(u) = −pu+ log(1−p+peu). By
straightforward computations, we get

f ′(u) = −p+
p

p+ (1− p)e−u
,

so that f(0) = f ′(0) = 0. Moreover, for all c ≥ 0,

f ′′(c) =
p(1− p)e−c

(p+ (1− p)e−c)2
≤ 1

4
.

Thus, by the Taylor-Lagrange theorem, there exists c ∈ [0, u]
such that,

f(u) = f(0) + uf ′(0) +
u2

2
f ′′(c) ≤ u2

8
=
θ2(b− a)2

8
,

which concludes the proof.

Remark 3.5 (Variance vs variance proxy). As proven in
Lemma 2.8, any gaussian random variable is subgaussian with
variance proxy equal to its variance. However a random vari-
able may be subgaussian with variance proxy strictly larger
than its variance. For example, if X follows the Bernoulli
distribution with parameter p ∈ (0, 1), p 6= 1/2, the variance
of X is p(1− p) while its variance proxy is

sup
θ 6=0

2

θ2
log(peθ(1−p) + (1− p)e−θp) =

1− 2p

2(log(1− p)− log p)
,

which is strictly larger than p(1− p). More generally, it may
be proven as an exercise that inequality

var(X) ≤ ‖X‖2vp,

always holds.

4 Sums of independent subgaussians

We now investigate the concentration properties of sums of
independent sub-gaussian variables.

Theorem 4.1 (Generalized Hoeffding inequality). Let
X1, . . . , Xn be independent sub-gaussian variables. Then,

‖
n∑
i=1

Xi‖2vp ≤
n∑
i=1

‖Xi‖2vp. (4.1)

In particular, for all t > 0,

P

{
1

n

n∑
i=1

(Xi − EXi) > t

}
≤ exp

(
− n2t2

2
∑n
i=1 ‖Xi‖2vp

)
.

Remark 4.2. As usual, we deduce by symmetry that, under
the same assumptions,

P

{
1

n

n∑
i=1

(Xi − EXi) < −t

}
≤ exp

(
− n2t2

2
∑n
i=1 ‖Xi‖2vp

)
.

Remark 4.3. Before the proof, note that (even without in-
dependence of the Xi’s) we already know from the first lecture
that

∑n
i=1Xi is sub-gaussian and that

‖
n∑
i=1

Xi‖vp ≤
n∑
i=1

‖Xi‖vp.

Here, the statement shows that this inequality can be improved
(add �2) if we assume the variables are independent.

Proof of Theorem 4.1. By independence, and for all θ ∈ R,

log E exp

(
θ

n∑
i=1

(Xi − EXi)

)
=

n∑
i=1

log E exp (θ{Xi − EXi})

≤ θ2

2

n∑
i=1

‖Xi‖2vp,

where the inequality holds by definition of sub-gaussianity.
Using the definition of sugaussianity again, we deduce (4.1).
The last statement follows from the concentration property
of sub-gaussian variables.

Applying Hoeffding’s lemma, we deduce the following re-
sult.

Corollary 4.4 (Classical Hoeffding inequality). If each Xi is
[ai, bi]-valued for some −∞ < ai < bi < +∞, then provided
the Xi’s are independent, a direct combination of Hoeffding’s
Lemma and Theorem 4.1 yields the inequality

P

{
1

n

n∑
i=1

(Xi − EXi) > t

}
∨ P

{
1

n

n∑
i=1

(Xi − EXi) < −t

}

≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
, (4.2)

known as Hoeffding’s inequality.
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