MMDA SEMINAR 3

1. Recap

Make sure you can shortly answer the following questions.

- 1. What do we call a simple function?
- 2. What is the basic approximation property of positive simple functions with respect to positive measurable functions ?
- 3. Define the integral of a positive simple function.
- 4. Define the integral of a positive measurable function.
- 5. What do we call an integrable function?
- 6. Define the integral of an integrable function.

2. Integral of a sum

Let (f_n) be a sequence of measurable and positive functions $f_n:(S,\mathbb{S})\to (\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+))$ and let μ be a positive measure on (S,\mathbb{S}) . Then, show that we always have

$$\int_{S} \sum_{n \ge 1} f_n \, \mathrm{d}\mu = \sum_{n \ge 1} \int_{S} f_n \, \mathrm{d}\mu.$$

3. Measures with densities

Consider three positive (and σ -finite) measures ν, μ, m on (S, \mathbb{S}) . Suppose that $\nu \ll \mu$ and that $\mu \ll m$.

- 1. Show that $\nu \ll m$.
- 2. Show that

$$\frac{\mathrm{d}\nu}{\mathrm{d}m} = \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \cdot \frac{\mathrm{d}\mu}{\mathrm{d}m}$$

- 3. Let $A \in \mathcal{B}(\mathbb{R}^d)$ be such that $\lambda_d(A) \in (0, +\infty)$ and let \mathcal{U}_A be the uniform measure on A.
- 3.a. Show that $\mathcal{U}_A \ll \lambda_d$.
- 3.b. Give the expression of

$$\frac{\mathrm{d}\mathcal{U}_A}{\mathrm{d}\lambda_d}$$

4. In this question we illustrate the importance of the σ -finite assumption. Show that the counting measure η on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is not σ -finite. Show that $\lambda_d \ll \eta$ but that λ_d does not have a density with respect to η : there exists no measurable and positive function $f: \mathbb{R}^d \to \mathbb{R}_+$ such that

$$\lambda_d(A) = \int_A f \, \mathrm{d}\eta.$$