Topics in learning theory*

Lecture 5: Empirical risk minimization (I)
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In this chapter, we come back to the problem of statistical learning introduced in Lecture
1 and explore a basic principle known as empirical risk minimization (ERM). Recall that,
in the statistical learning setup, one is given:

e a decision set O,
e an outcome set Z,
e a loss function £: © x Z — R,

e and finally a learning sample
{Zi}ia,

composed of i.i.d. Z-valued random variables with same distribution as (and inde-
pendent from) a generic random variable Z.

In this setting, the goal is to construct a data-driven decision 0,, that minimizes the excess
risk

&(0,) := R(6,) — R*,
with high probability or in expectation, where

R(0,) = E[0(bn, 2){Z:}11),

and

* — inf E[0(0, Z)).
R = inf AC4)

*Teaching material can be found at https://www.qparis-math.com/teaching.
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1 Empirical risk minimization

Empirical risk minimization is the natural statistical procedure consisting in minimizing
an approximation of the risk constructed from data. Precisely, empirical risk minimization
consists in chosing

~

0, € argmin R, (), (1.1)
feM

where
1 n
R,(0)=—")Y (0,7,
=13 0.2
is known as the empirical risk of 6 and
MC O,

is called hypothesis class or model. The role of M is fundamental in this framework and
its choice should leverage the statistician’s knowledge of the problem at hand, i.e., the
available information on the unknown distribution of the data.

2 Estimation-Approximation tradeoff

The role of model M is made clear by observing that the excess risk of an empirical risk
minimizer 6,, decomposes as

A~

= (R(6,) — inf R(0)) + inf (R(0) — R*). (2.1)

&(6,) = R(0,) — R*
( 0eM oeM

In this decomposition, known as the estimation-approximation decomposition, the two
terms on the right hand-side of (2.1) show opposite behaviors in terms of the model M.

The first term, R

R(6,) — jnf R(6),

is random, referred to as the estimation error, and quantifies the performance of 0,, com-
pared to the best possible (deterministic) predictor in M. Roughly speaking, the estimation
error tends to get larger (and the optimization problem (1.1) more difficult to solve) as the
complexity of M increases. Hence, from this point of view, one should favor a simple or
small model M.

The second term,

Jnf (R(0) - R")

is deterministic, non-negative and referred to as the approximation error. Note that, while
M C © may be much smaller than ©, it may be that there exists § € M such that

R(0) = R*,

in which case the approximation error is 0. More generally, the approximation error ac-
counts for the approximation properties of M relative to the set of elements 6 € © solving
R(f) = R*. Contrary to the estimation error, this term tends to get smaller as the com-
plexity or size of M gets larger. Specifying a small M for which the approximation error is
small is a problem relative to both approximation theory and the statistician’s expertise.



3 Risk bounds for finite classes
In this section, we focus on bounding the estimation error
R(6,) — inf R(0
(0n) 0123\/[ (0),
in the simple setting where the model M is composed of a finite number of elements.

3.1 A general result

We start with a technical lemma.

Lemma 3.1. Suppose that X,Y are two sub-gaussian random variables (not necessarily

independent) with respective variance proxys O'g( and 0}2/. Then, X — Y 1is sub-gaussian

with variance prory at most 20% + 2032/.

Proof. Exercise. O

Theorem 3.2. Suppose that, for all 0 € M, the random variable £(0,Z) is sub-gaussian
with variance proxy at most o%. Then, for alln > 1 and all § € (0,1),

R 2 M
- < 1 (B8

with probability at least 1 — 4.

Proof. We divide the proof in three steps.

Step 1. In this first step, we show how to bound the estimation error by the uniform
deviation between the risk and the empirical risk on the class M. Introduce

6 € argmin R(6),
oeM

and denote,
R(0) := R(A) — R(A) and R,(0) := R,(0) — R,(0).

Now observe that since,

we get

In particular, we deduce that

R(6,) — inf R(O) < max(R(0) — Ra(0).

Step 2. Now we combine the first step, and the union bound, to deduce that, for all ¢t > 0,

P(R(0:) ~ inf R(0) > 1) < P(max(R(6) — Ru(0)) > 1)
= M| maxP(R(6) - R (0) > 1).



Step 3. Observe that, for all # € M, we have
R(9) = E[6(0, 2) — EX0, 7)),

and

The variables B
6(9, Zi) — 6(9, Zi), 1< < n,

are independent and, according to Lemma 3.1, they are sub-gaussian with variance proxy
at most 402. Hence, applying Hoeffding’s inequality, we conclude that

n 2
P(R(6) — Ru(8) > 1) < exp (—&;> .

Combining this observation with the result of Step 2 we get finally that, for all t > 0,

N . nt?
P(R(G) — Inf R(6) > 1) < [M]exp (—80> |

Selecting any 0 € (0, 1), selecting ¢t > 0 such that

nt?
(5 = ]M[exp <—&‘_2> y

and expressing t in terms of §, it appears that this statement is equivalent to the desired
result. O

Corollary 3.3. Under the assumptions of the previous result, we have for alln > 1,

E[R(0,)] — jnf R(0) < 8“211“71(63%')

Proof. Exercise. O

3.2 Faster rates for strongly convex losses

In this paragraph, we show how the previous result can be greatly improved under addi-
tional assumptions on the loss function ¢. We start by mentioning an auxiliary result.

Theorem 3.4 (Bernstein’s inequality). Let {X;}!', be i.i.d. random variables taking
values in a bounded interval [—b,b]. Then, for all t >0,

1 — nt?
P - X,—EXi|>t)| <exp| —+ | .
(nz i~ 2 ) - p( 2var(X1)+2bt>

i=1 3

It is an easy exercise to observe that, under the same assumptions, Bernstein’s inequality
improves upon the bound of Hoeffding’s inequality for all ¢ € (0, ] (the only relevant range
of t’s in this context) provided the X;’s have a small variance and more precisely if

2

var(X;) < 3



In the sequel, we suppose that © is a convex subset of a normed vector space equipped
with norm ||.||.

Theorem 3.5. Suppose that model M is well specified, i.e., that there exists 6* € M such
that R(0*) = R*. Suppose in addition that there exists b, L, > 0 such that the following
assumptions hold:

(1) For all € M,
P(0</0,7Z)<b) =1,

(2) For all z € Z, for all 0,6 € ©,
|£(07 Z) - 6(9/, Z)‘ < LHG - HIHa

(3) For all z € Z, the map 6 € © — £(0, z) is a-convex.
Then, for alln > 1 and all § € (0,1),

2

0em « n

with probability at least 1 — 4.

Proof. We divide the proof in several steps.

Step 1. As in the proof of Theorem 3.2, denote

R(0) := R(0) — R(0*) and Rn(0) := Rn(0) — Ru(6%).

Bernstein’s inequality implies that, for all ¢ > 0 and all 8 € M,

_ _ nt?
P(R(0) — Rn(0) > t) < exp <_v(9)+2§t> )

where

v(0) := Var(¢(0, Z) — L(6, Z2)).
Using assumption (2), we get
v(0) <E[(4(0, Z) — (0%, 2))?]
< 120 - 0",

Assumption (3) implies in addition that the risk function is a-convex which implies, ac-
cording to Lecture 4, that

8% _
Pl 0||* < R(6).
Combining the two previous observations, we deduce that,

() < gR(e).

(0%



As a result, for all ¢ > 0,

< exp (— nt_2 )
max{4L=R(6), %'}
. ant? 3nt
- <_mm{4L2R(0)’ 4b}> '

It is an easy exercise to check that the above inequality implies that, for all § € (0, 1),

R(6) — Ru(6) > max {QL B;(S) In (;) , ;‘% In <<15) } , (3.1)

with probability at most 9.

Step 2. Lets number the elements of M as
M=A0,...,0n}.

Observe that the inequality of the theorem, i.e.,

is equivalent to

R(6,,) < max {2L R(Ef:) In (%), ;l—z In (%) } .

As a result, using the fact that R, (6,) <0,

(2.2} 2 2)

_ . _ R(én) m\ 4b m
< — _ -
<P| R, Rn(Qn)>maX{2L on ln(é),3 ln<5>})
- " ;o _ _ R(0)) m\ 4b m
_;P (en_ej,R(aj) Ra(0)) >max{2L L <F)’3 In (5)}>

_ R(0)) my\ 4b m
<m max P (R(ej) — Rp(6;) > max {2L L (3) I (3) })
<9,
where the last inequality follows from Step 1. O
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